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Introduction
Cryptographic algorithms built on isogenies between supersingular elliptic curves
have, for the past 10 years, become one direction in which we can go to achieve
post-quantum cryptographic algorithms i.e., cryptographic algorithms that do
not have efficient attacks against them using potential quantum computers.

The algorithms CSIDH1 and SIDH2 are meant to be post-quantum alterna-
tives for the famous Diffie-Hellman key exchange. Both of these algorithms are
built on the theory of supersingular curves and utilize walks on a specific super-
singular isogeny graph. Although CSIDH and SIDH have very similar names, the
theory behind them is quite different.

SIDH was developed first in 2011 by De Feo, Jao and Plût ([FJP11]) as a
practically usable post-quantum key exchange algorithm inspired by the work of
Rostovtsev and Stolbunov ([RS06]).

In 2018, Castryck et al. presented an alternative to SIDH called CSIDH
([Cas+18]). CSIDH is also inspired by the work of Rostovtsev and Stolbunov
([RS06]).

A standardized version of SIDH named "SIKE" is also a Round 3 finalist of
NIST’s Post-Quantum Cryptography Standardization project. CSIDH did not
participate because the standardization project started in 2017.

The goal of this thesis is to present the necessary theory to understand how
and why these two algorithms work, including a few examples. The understand-
ing of the theory is crucial because, unless you are an expert in that field, after
reading the above-mentioned papers [Cas+18] and [FJP11], you probably have a
plethora of unanswered questions. This is because the authors mention only the
necessary statements and do not provide proofs in many instances. Therefore, a
non-expert in the theory of isogeny graphs has to go through an exhaustive num-
ber of references, which most of the time use different notation, to find answers.

In the first chapter, we first present a brief summary of number theory and
ring theory that we are going to use later on. In the second part of the first
chapter, we introduce the basics of the theory of elliptic curves focused mainly on
isogenies between elliptic curves. Note that we assume the reader is familiar with
most of the theory presented. For details, we recommend the books of Galbraith
[Gal12], Washington [Was08] or Silverman [Sil09].

The second chapter builds on this theory to closely explore the theory of
supersingular/ordinary curves and their endomorphism rings. We also present a
few technical statements that are going to be useful in the final chapters.

The third chapter is supposed to inform the reader about where does the ideal
class group action come from. The ideal class group action is the building block
of the algorithm CSIDH. Note that the theory is presented using elliptic curves
over C. Therefore, we only present the necessary minimum and do not go into
detail. This is because we are mainly interested in elliptic curves over finite fields.

That is where the fourth chapter comes into play. In this chapter, we show
how can we define the ideal class group action on elliptic curves over finite fields.

In the fifth chapter, we focus on the isogeny graphs of elliptic curves. We
1Stands for "Commutative Supersingular Isogeny Diffie-Hellman".
2Stands for "Supersingular Isogeny Diffie-Hellman".
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present some of their properties that are useful for understanding CSIDH and
SIDH. We also present statements about ordinary and supersingular curves that
are specific to CSIDH and SIDH.

At the end, we finally present the algorithms for which we were building the
theory. We start with CSIDH because it utilizes most of the presented theory
and after understanding CSIDH we believe SIDH is easier to comprehend. We
briefly state the overview of the algorithm and then we go into detail with the
help of an example. We mention a few security aspects that are not mentioned
in the paper ([Cas+18]).

Then, we present the algorithm SIDH in the similar manner with comparisons
to CSIDH.

The thesis is nearly self-contained. Besides basic facts about ring, modules
and elliptic curves there are some facts from number theory which are mostly
contained in Chapter 3 and were taken from [Sut19] and [Cox13].

Statements concerning elliptic curves and their endomorphism ring are proved
nearly completely with notable exceptions like Hasse’s theorem (Theorem 31), the
classification of the endomorphism algebra (Theorems 26, 41), Theorem 45 and
Schoof’s theorem about the structure of the group of points of supersingular
curves elliptic curves (Theorem 33).
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1. Preliminaries
First, we introduce a few terms and theorems from number theory which we are
going to utilize later. We define these because across literature the terminology
could be a bit different. The number theory follows mainly [Cox13].

In the second part of this chapter, we present the basic theory of elliptic curves
and isogenies.

Note, we use the notation |G : H| for the index of a subgroup group H in a
group G and the notation |G| for the order of a group G.

1.1 Quadratic fields, tensors and orders
Definition 1. Let R be a commutative ring and let A,B be R-modules. We define
a tensor product of A,B over R (denoted A⊗R B) as

A⊗R B = F (A×B)/G

where F (A × B) is the free R-module generated by all elements (a, b) ∈ A × B
and G is the R-submodule generated by all elements of the form

1. −(a1 + a2, b) + (a1, b) + (a2, b)

2. −(a, b1 + b2) + (a, b1) + (a, b2)

3. −(ra, b) + (a, rb)

4. −r(a, b) + (a, rb)
where a, a1, a2 ∈ A, b, b1, b2 ∈ B and r ∈ R. The equivalence class [(a, b)], a ∈
A, b ∈ B is denoted as a⊗ b ∈ A⊗R B.

If A,B are R-algebras, then we define the product on elements of the form
a⊗ b ∈ A⊗R B as

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2)

where a1, a2 ∈ A, b1, b2 ∈ B. We then extend this product linearly to all elements
of A⊗R B making it an R-algebra.

Definition 2. Let R be a Q-algebra of dimension r ∈ N (as a Q-vector space).
We call O ⊆ R an order in R if O is a subring which is Z-module of rank r.

An order O in R is maximal if there does not exist a different order O′ in R
s.t. O ⊆ O′.

Remark. An alternative definition of an order using a tensor product is: O ⊆ R
is a subring which is finitely generated as a Z-module and O ⊗Z Q = R.

A quadratic field is a field extension of Q of degree 2. Every quadratic field
can be uniquely expressed as Q(

√
D) where D ∈ Z, D square free.

Definition 3. Let K = Q(
√
D) be a quadratic field and let D ∈ Z be square free.

The discriminant of K denoted as dK is defined as

dK =

⎧⎨⎩D D ≡ 1 mod 4
4D D otherwise.
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Remark. Note that dK mod 4 ∈ {0, 1} and K = Q(
√
D) = Q(

√
dK) so K is

uniquely determined by its discriminant.
Assume K is a quadratic field. If dK < 0, then we say that K is an imaginary

quadratic field and if dK > 0, then K is a real quadratic field. In our work we
will only work with imaginary quadratic fields therefore from now on we will only
focus on them.

Theorem 1. Let K be an imaginary quadratic field. Denote OK its ring of
integers. Let O be an order in K. Then

(a) OK is a unique maximal order in K of rank r = [K : Q].

(b) OK = Z
[︂

dK+
√

dK

2

]︂
.

(c) ∃!f > 0 ∈ Z s.t. O = Z + fOK (as a ring).

(d) f from (c) is equal to |OK : O|.

(e) OK is a Dedekind domain.

Proof. [Cox13] Lemma 7.2 and discussion before the lemma. For (e) see Theorem
5.5.

Remark. Let O be an order in K. The index |OK : O| = f > 0 ∈ Z from (d) is
called the conductor of O

We will now introduce a lattice. We will work with this term mainly in the
third chapter but it is useful to define it here.

Definition 4. A lattice is an additive subgroup of C generated by two complex
numbers α, β ∈ C s.t. α, β are linearly independent over R.

A lattice L generated by α, β is usually denoted as L = [α, β] = αZ + βZ.

From Theorem 1 we can deduce that OK = [1, αK ] where αK = dK+
√

dK

2 . Also,
from point (c) we get that every order O in K is a lattice O = [1, fαK ].

From now on if O = [1, α], then we assume α = fαK for some f ∈ N.

Definition 5. Let O = [1, α] be an order in an imaginary quadratic field. The
discriminant of O is the discriminant of the minimal polynomial of α over Q.
We denote it as disc(O).

Remark. Since α /∈ R and α2 ∈ Q, the minimal polynomial of α over Q is of the
form x2 + ax+ b ∈ Z[x] where the discriminant is a2 − 4b < 0 because α /∈ R. We
can compute is as

disc(O) = (α− α)2.

Since disc(O) = a2 − 4b for some a, b ∈ Z, then disc(O) is a square modulo 4 i.e.,
disc(O) mod 4 ∈ {0, 1}.

Definition 6. Let D ∈ Z, D < 0 s.t. D mod 4 ∈ {0, 1}. Such D is called a
discriminant.

Let D be a discriminant. If D cannot be written as D = f 2D′ where f ∈
Z, f > 1 and D′ a discriminant then we call D a fundamental discriminant.
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Corollary. Let D be discriminant. There exists a unique order O in an imagi-
nary quadratic field K s.t. disc(O) = D = f 2DK , where DK is a fundamental
discriminant s.t. disc(OK) = DK , K = Q(

√
DK) = Q(

√
D) and f = |OK : O|.

Also, clearly dK = DK where dK is the discriminant of K.

Proof. Follows from Theorem 1.
Definition 7. Let O be an order in an imaginary quadratic field. We call a set
L an O-ideal if L is an ideal of O.
Remark. This definition makes sense since an order is a subring of an imaginary
quadratic field.
Definition 8. Let O be an integral domain with a fraction field K. We call the
set I ⊂ K a fractional ideal of O if there exists an O-ideal J and α ∈ K \ {0}
s.t. I = αJ = {αβ : β ∈ J}.

Let αI, βJ be fractional O-ideals. The product of αI and βJ is defined as
αI · βJ = (α× β)(I ·′ J) = (αβ)IJ

where × is product in K and ·′ is product of O-ideals.
Remark. If K in the previous definition is an imaginary quadratic field (the case
we are interested in), we can always write a fractional ideal of O in the form 1

n
I

where n ∈ Z, n > 0 and I an O-ideal.
If I is a fractional O-ideal and I ⊆ O, then I is an O-ideal. Every O-ideal is

a fractional O-ideal.
Definition 9. Let I be a fractional O-ideal. If there exists a fractional O-ideal
J s.t. IJ = O then I is said to be invertible.
Remark. Let O be an order in an imaginary quadratic field K. If I is an invertible
O-ideal, then the inverse ideal J s.t. IJ = O is unique and we can use the
notation I−1 = J . Because if J ′ is another fractional ideal s.t. IJ ′ = O, then due
to commutativity J = JO = J(IJ ′) = (JI)J ′ = (IJ)J ′ = OJ ′ = J ′.

Note that we are assuming an embedding of K in C thus for α ∈ K : N(α) =
αα.
Definition 10. Let O be an order in an imaginary quadratic field K and I be a
non-zero O-ideal. The norm of I is defined as

N(I) = |O : I| ∈ N.

Also define the norm of a non-zero fractional O-ideal J = 1
b
I, where b ∈

Z, b > 0, as

N(J) = N(I)
N(b) ∈ Q > 0.

Remark. The norm of a fractional ideal does not depend on the choice of I and
b.
Definition 11. Let O be an order in an imaginary quadratic field K and I an
O-ideal. Denote

O(I) = {α ∈ K : αI ⊆ I}.

Definition 12. Let O be an order in an imaginary quadratic field, let I be an
O-ideal. We call I a proper O-ideal if O(I) = O.
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1.2 Elliptic curves and isogenies
In this section we introduce the essentials needed to understand what isogenies
are. We assume the reader is familiar with basics of algebraic geometry, divisors,
elliptic curves and the group structure of an elliptic curve. Nonetheless we will
start with some basic definitions which are used throughout the whole text.

In the following we assume a curve is always irreducible (i.e., a curve is a
variety) over K. We also assume the reader is familiar with the correspondence
between affine and projective curves. Therefore, in some cases we will not specif-
ically say if by a curve we mean a subset of P2 (a projective space of dimension
2) or A2 (an affine space of dimension 2).

Throughout the whole work we assume that K is a perfect field. If we work
with a finite field (K = Fq), we automatically assume q = pe for some p ∈ N
prime and e ∈ N.

Definition 13. Let K be a field. A Weierstrass curve over K is a curve defined
a Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

where ∀ai ∈ K.

Remark. If char(K) ̸= 2, then (1.1) is K-equivalent by substitution

(x, y) ↦→
(︃
x, y − a1x+ a3

2

)︃
to a short Weierstrass equation is of the form

y2 = x3 + b2

4 x
2 + b4

2 x+ b6

4 (1.2)

where

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6.

If char(K) /∈ {2, 3}, then (1.2) is also K-equivalent by substitution

(x, y) ↦→
(︄
x− 3b2

36 ,
y

216

)︄

to a simpler form
y2 = x3 + px+ q (1.3)

where

p = −27(b2
2 − 24b4)

q = −54(36b2b4 − b3
2 − 216b6).

In this text we will not work with fields of characteristic 2 or 3 so we will not
focus on these special cases. Therefore, from now on assume K to be a field s.t.
char(K) /∈ {2, 3}.
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Definition 14. Let C be a Weierstrass curve over K (1.1). Define additional
terms as follows

b8 = 4a2a6 + a2a
2
3 + a2

1a6 − a2
4 − a1a3a4

c4 = b2
2 − 24b4

∆(C) = −8b3
4 − 27b2

6 + 9b2b4b6 − b2
2b8

and if ∆(C) ̸= 0, then also

j(C) = c3
4

∆(C) .

Call ∆(C) the discriminant of C and j(C) the j-invariant of C.

This following theorem formulates the basic properties of the j-invariant.

Theorem 2. Let C,C ′ be Weierstrass curves over K.

(a) C is smooth ⇐⇒ ∆(C) ̸= 0.

(b) If C,C ′ are smooth curves, then j(C) = j(C ′) ⇐⇒ C and C ′ are K-
equivalent.
In addition, if j(C) /∈ {0, 1728}, then C and C ′ are L-equivalent where
[L : K] ≤ 2.

(c) ∀λ ∈ K there exists a Weierstrass curve C ′ over K s.t. j(C ′) = λ.

Proof. [Sil09] Chapter III, Proposition 1.4.

j-invariant gives us a tool for checking if curves are equivalent or not and
subsequently if their functions fields are isomorphic. It also helps with checking
the smoothness of a curve.

Definition 15. We say E is an elliptic curve if E is smooth and is of genus one.

Definition 16. Let E,E ′ be elliptic curves over K. If j(E) = j(E ′) and E,E ′

are not K-equivalent but are L-equivalent where L ≥ K, we call E,E ′ twisted or
we say E is a twist of E ′ (and vice versa).

More specifically if [L : K] = 2 then we say E is a quadratic twist of E ′.

Usually there is a fixed point on the curve (which corresponds to a place of
degree one) which is called the base point or point at infinity denoted by ∞ or
O. We will mainly use O to denote the base point but sometimes we will use
∞ in cases where there might be a confusion since O is also the notation for an
order.
Remark. Let E be an elliptic curve and O ∈ E. Often an elliptic curve is denoted
as a pair (E,O).

We say E is an elliptic curve over K if E is a curve defined over K and O ∈ E
is K-rational.
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The term "point at infinity" is sometimes used to describe the projective points
of a curve which cannot be mapped upon affine points. In our case we work only
with Weierstrass curves which have a unique point at infinity so we use this term
interchangeably.

As we know every elliptic curve can be considered a group. More specifically
the points of an elliptic curve form an abelian group with an operation ⊕ and the
neutral element being O. In the case of Weierstrass curve O = (0 : 1 : 0) ∈ P2.

From now on we will assume that an elliptic curve is given by a Weierstrass
equation. The following claims can be applied upon any elliptic curve since every
function field of an elliptic curve is isomorphic to a function field given by a
Weierstrass equation.

Theorem 3. Let char(K) ̸= 2, 3, E : y2 = x3 + Ax+ B,E ′ : y2 = x3 + A′x+ B′

be elliptic curves over K.

(a) If j(E) ̸= 0, 1728 then define γ(E) = B
A

mod (K∗)2 ∈ K∗/(K∗)2 (as an
element of the quotient group of the group K∗) and similarly γ(E ′),

(b) if j(E) = 0 then define γ(E) = B mod (K∗)6 ∈ K∗/(K∗)6 and similarly
γ(E ′),

(c) if j(E) = 1728 then define γ(E) = A mod (K∗)4 ∈ K∗/(K∗)4 and similarly
γ(E ′).

Then E and E ′ are K-equivalent (K-isomorphic) if and only if j(E) = j(E ′) and
γ(E) = γ(E ′).

Proof. Follows from the same as Theorem 2 with steps listed in [Sil09] Chapter
X, Exercise 10.21.

Remark. In the previous theorem the definitions for γ(E) can be reworded in
maybe simpler way. For example, in the case j(E) ̸= 0, 1728 we need to check
if B

A
is a square in K and B′

A′ is a square in K. If they are both squares or both
non-squares we have a K-isomorphism.

Definition 17. Let (E,O) be an elliptic curve over K. By E(K) we mean the
set of all points P ∈ E s.t. P are K-rational. The elliptic curve group is then
denoted as a pair (E(K),⊕) where O is the neutral element.

Since we have defined the elliptic curve group, we can finally define what an
isogeny is.

Definition 18. Let (E1,O1), (E2,O2) be elliptic curves over K. Let ψ : E1 → E2
be a K-rational map. We say ψ is an isogeny over K if ψ(O1) = O2.

Isogeny over K is called an isogeny.
We say E1, E2 are isogenous (over K) if there exists an isogeny E1 → E2

(over K).
The set of all isogenies E1 → E2 over K is denoted as HomK(E1, E2).

Since we are working with (projective) elliptic curves E1, E2 (smooth and
irreducible) over K every K-rational map ψ between them is a morphism over K

9



i.e., Dom(ψ) = E1. Also, every non-constant morphism over K between smooth
curves is surjective.

From that we can conclude that every non-constant isogeny between elliptic
curves is surjective. There exists only one constant morphism between elliptic
curves that maps base point upon base point. This isogeny is called a zero isogeny.

Definition 19. Let ψ : E1 → E2 be a non-zero isogeny (over K) between elliptic
curves over K. By degree of ψ (as an isogeny) we mean the degree of ψ as a
rational map i.e., deg(ψ) = [K(E1) : Im(ψ∗)] where ψ∗ : K(E2) → K(E1) is the
K-homomorphism induced by ψ.

Define the degree of a zero isogeny as 0.

Remark. Every isogeny is of finite degree.
Remark. Sometimes you might see an isogeny being referred to as a n-isogeny for
some n ∈ Z. This is an abbreviation to saying that the degree of the isogeny is
n.

Definition 20. We say that elliptic curves E1, E2 over K are isomorphic (over
K) if there exist isogenies ψ : E1 → E2 and ϕ : E2 → E1 (over K) s.t.
ϕ ◦ ψ = idE1 and ψ ◦ ϕ = idE2. These isogenies are necessarily of degree 1. An
isogeny of degree 1 is called an isomorphism.

Remark. Sometimes we use the term "K-isomorphic" instead of "isomorphic over
K".

Note that isomorphism between elliptic curves is "almost" the same as bira-
tional equivalence between curves except there is one more condition that those
maps have to map base points upon base points.

Theorem 4. Let ψ be a non-zero isogeny over K between elliptic curves over K.

(a) There exist polynomials p, q, r, s ∈ K[x] s.t. gcdK[x](p, q) = 1, gcdK[x](r, s) =
1 and ψ(x, y) =

(︂
p(x)
q(x) , y

r(x)
s(x)

)︂
.

(b) deg(ψ) = max(deg(p), deg(q)).

(c) ψ is separable ⇐⇒
(︂

p
q

)︂′
̸= 0.

Proof. Follows from [Was08] section 2.9 and from the definitions of degree of a
rational map and its separability.

Remark. The rational functions in the previous claim are sometimes called the
standard form of an isogeny.

Definition 21. Let ψ : E1 → E2 be a non-zero isogeny (over K) between elliptic
curves over K. Define the separability degree of ψ (denoted as degs(ψ)) as the
degree of separability of the field extension K(E1)/Im(ψ∗).

Similarly define the inseparability degree of ψ (denoted as degi(ψ)) as the
degree of inseparability of the field extension K(E1)/Im(ψ∗).

For a zero isogeny the separability degree and the inseparability degree are
defined as 0.

We call ψ separable if K(E1)/Im(ψ∗) is a separable field extension. We call ψ
inseparable if it is not separable. We call ψ purely inseparable if K(E1)/Im(ψ∗)
is a purely inseparable field extension.
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Remark. Let ψ : E1 → E2 be an isogeny (over K) between elliptic curves over K.
Then deg(ψ) = degs(ψ) degi(ψ).

Theorem 5. Let E1, E2 be elliptic curves over K. Let ϕ, ψ ∈ HomK(E1, E2).
Then a map ϕ⊕ ψ: E1 → E2 defined as:

∀P ∈ E1 : (ϕ⊕ ψ)(P ) = ϕ(P ) ⊕2 ψ(P )

where (⊕2 denotes the binary group operation of E2) is also an isogeny E1 → E2
over K.

Let ρ ∈ HomK(E1, E1) then a map ⊖ρ : E1 → E1 defined as:

∀P ∈ E1 : (⊖ρ)(P ) = ⊖1ρ(P )

where (⊖1 denotes the unary group operation of E1) is also an isogeny E1 → E1
over K.

Proof. [Drá21] Theorem T.8.

Remark. Theorem 5 allows us to interpret isogenies between elliptic curves as a
group.

Let (E,O) be an elliptic curve over K. Denote EndK(E) = HomK(E,E)
(endomorphisms of E over K). Due to Theorem 5 we know EndK(E) is a group
and by definition of isogenies ∀ϕ1, ϕ2 ∈ EndK(E) : ϕ1 ◦ ϕ2 ∈ EndK(E). In
conclusion EndK(E) is a ring with operations (⊕, ◦) and neutral elements ([0], [1]).
An element of this ring is called an endomorphism of E over K.

The set of invertible elements of EndK(E) forms the automorphism group of
E denoted as AutK(E).

Also denote End(E) = EndK(E) and similarly for Aut(E).

Theorem 6. Let E1, E2 be elliptic curves over K where char(K) /∈ {2, 3}. Every
isomorphism ϕ : E1 → E2 defined over K is of the form:

ϕ(x, y) = (u2x, u3y)

where u ∈ K. If u ∈ K, then ϕ is defined over K.

Proof. [Was08] Theorem 2.19.

Definition 22. Let E be an elliptic curve over K and n ∈ Z. By [n] we denote
the endomorphism of E over K defined as

n ≥ 0 : ∀P ∈ E : [n](P ) = P ⊕ · · · ⊕ P (n times)
n < 0 : [n](P ) = ⊖([−n](P )).

Remark. Using the definition above [0] is the unique zero isogeny of E and [1] is
the identity map of E.

We will often use notation m,n ∈ Z : [n + m] = [n] ⊕ [m] and [n · m] =
[n] ◦ [m] = [n][m].
Corollary. Let E be an elliptic curve over K. The map

Z → EndK(E) : n ↦→ [n]

is a ring homomorphism.
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Theorem 7. Let (E,O) be an elliptic curve over K,m ∈ Z. [m] = [0] ⇐⇒
m = 0 i.e., if m ̸= 0, then [m] is a non-constant map.

Proof. [Sil09] Chapter III, Proposition 4.2 (a).

Corollary. Let E be an elliptic curve over K. Then EndK(E) is a domain and
its characteristic is 0.

Definition 23. Let (E,O) be an elliptic curve over K and let m ∈ N. The set
of points of E of order which divides m is called the m-torsion subgroup of E. It
is denoted by E[m] i.e., E[m] = {P ∈ E : [m](P ) = O}.

Also the torsion subgroup of E is defined and denoted as

Etors = ∪∞
m=1E[m].

E[m](K), Etors(K) denote the subsets of points of E[m], Etors which are K-
rational.

Theorem 8. Let E1, E2 be elliptic curves and let ψ ∈ Hom(E1, E2) non-constant.
Then ∀P ∈ E2 : |Ker(ψ)| = |ψ−1(P )| = degs(ψ).

Proof. [Drá21] Theorem T.15.

Corollary. Under the assumptions from Theorem 8. If ψ is separable then
|Ker(ψ)| = deg(ψ).

Theorem 9. Let A,B,C be elliptic curves, ψ ∈ Hom(A,B), ϕ ∈ Hom(A,C)
non-constant, ψ separable and Ker(ψ) ⊆ Ker(ϕ). There exists a unique isogeny
ρ ∈ Hom(B,C) s.t. ϕ = ρ ◦ ψ.

Proof. [Drá21] Theorem T.18.

If char(K) = 0 then every isogeny is separable over K. For the other case
there is Theorem 10 which decomposes an isogeny into a separable part and a
Frobenius map.

Let K be a field s.t. char(K) = p s.t. p is a prime and E be an elliptic curve
over K. Let ϕ be the Frobenius endomorphism of K i.e., ϕ : K → K : α ↦→ αp.
We extend this endomorphism to a K-endomorphism Φ of K[X, Y, Z]. For e ∈ N
define ϕe = ϕ◦· · ·◦ϕ (e times), similarly for Φ. If E = VF for some F ∈ K[X, Y, Z]
then by E(e) we mean the curve given by Φe(F ) i.e., E(e) = VΦe(F ). Since Φ is
a K-endomorphism we can easily check that E(e) is smooth since E is smooth.
Especially in our case if E is a Weierstrass curve, then j(E(e)) = j(E)pe .

Naturally we can define a K-rational map ϕe : E → E(e), e ∈ N

ϕe = (Φe(X),Φe(Y ),Φe(Z)) = (Xpe

, Y pe

, Zpe).

We call ϕe a Frobenius map. Since we assume E to be an elliptic curve (and
therefore smooth), then ϕ is a morphism.

Theorem 10. Let char(K) = p > 0, E1, E2 elliptic curves over K and ψ ∈
HomK(C1, C2). There exists e ≥ 0 ∈ Z and ρ ∈ HomK(E(e)

1 , E2), ρ separable s.t.
ψ = ρ ◦ ϕe.

12



Proof. [Drá21] Theorem T.13.

Theorem 11. Let E1, E2 be elliptic curves over K, ψ ∈ HomK(E1, E2), ψ non-
constant. There exists a unique isogeny ˆ︁ψ ∈ HomK(E2, E1) s.t. ˆ︁ψ ◦ψ = [deg(ψ)].

Proof. [Sil09] Chapter III, Theorem 6.1 (a).

Definition 24. Under the assumptions from Theorem 11, the isogeny ˆ︁ψ is called
the dual isogeny of ψ. It is denoted as ˆ︁ψ.

This next theorem sums up the basic properties of dual isogenies.

Theorem 12. Let E1, E2 be elliptic curves over K, ψ ∈ HomK(E1, E2),m =
deg(ψ), ψ non-constant. Then

(a) ˆ︁ˆ︁ψ = ψ.

(b) deg(ψ) = deg( ˆ︁ψ) = m.

(c) ˆ︁ψ ◦ ψ = [m] ∈ EndK(E1).

(d) ˆ︃[m] = [m].

(e) deg([m]) = m2.

(f) Let E3 be another elliptic curve over K and ϕ ∈ HomK(E2, E3) non-
constant. Then ˆ︁ϕ ◦ ψ = ˆ︁ψ ◦ ˆ︁ϕ ∈ HomK(E3, E1).

(g) Let ρ ∈ HomK(E1, E2) be non-constant. Then ˆ︁ϕ⊕ ρ = ˆ︁ϕ⊕ ˆ︁ρ.
Proof. [Sil09] Chapter III, Theorem 6.2.

Next theorem gives us the structure of m-torsion subgroups.

Theorem 13. Let (E,O) be an elliptic curve over K and let m ∈ N. If
char(K) = 0 or char(K) = p > 0 s.t. p ∤ m, then

E[m] ∼= Zm × Zm.

If char(K) = p > 0, then

∀e ∈ N : E[pe] ∼= Zpe

or
∀e ∈ N : E[pe] = {O}.

Proof. [Drá21] Theorem D.5. and Corollary D.6.

Corollary. Let H ≤ E(K) be a finite subgroup of order n ∈ N. Let char(K) = p.
Then there exist k, l ∈ N s.t. k | l and p ∤ k and H ∼= Zk × Zl.
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Proof. Clearly H ≤ E[n] (order of every element of H is at most n). If p ∤ n
then it is the first case of Theorem 13. Subgroups of Zn × Zn can be expressed
as Zk × Zl with the assumed properties.

Now if p | n: n = mpe where p ∤ m and e ≥ 1. Then using basic properties
of abelian groups we have E[n] ∼= E[m] × E[pe] since p ∤ m. Now, we can use
Theorem 13 for both cases. E[m] ∼= Zm × Zm and E[pe] ∼= Zpe or E[pe] ∼= {O}.
In the first case we have

E[n] ∼= Zm × Zm × Zpe
∼= Zm × Zmpe .

If E[pe] ∼= {O}, then E[n] ∼= Zm × Zm.

Definition 25. Let E1, E2, E
′
2 be elliptic curves over K and let ψ ∈ Hom(E1, E2),

ϕ ∈ Hom(E1, E
′
2). We say ψ and ϕ are K-isomorphic if there exists an isomor-

phism (an isogeny of degree 1) ρ ∈ E2 → E ′
2 defined over K s.t.

ρ ◦ ψ = ϕ.

Example 1. Isogenies [n], [−n] ∈ EndK(E) are K-isomorphic. In this case E1 =
E2 = E ′

2 and ρ = [−1]. [−1] is clearly a K-rational map.

Definition 26. Let E be an elliptic curve over K. Let H ≤ E be a subgroup. We
say H is defined over K if H is Gal(K/K)-invariant i.e., ∀ρ ∈ Gal(K/K),∀P ∈
H : ρ(P ) ∈ H.

Theorem 14. Let E be an elliptic curve over K and let H ⊆ E be a finite
subgroup. Then there exists a unique elliptic curve E ′ (up to K-isomorphism) and
a unique separable isogeny ϕ ∈ Hom(E,E ′) (up to K-isomorphism) s.t. Ker(ϕ) =
H. The curve and the isogeny are defined over a finite extension of K.

If H is defined over K then E ′ is defined over K and ϕ ∈ HomK(E,E ′). In
this case E ′ and ϕ are unique up to K-isomorphism.

Proof. We only provide the proof of uniqueness. The proof of existence can be
done by verifying Vélu formulae presented in Theorem 16.

Uniqueness: Let ψ : E → ˆ︁E be another separable isogeny s.t. Ker(ψ) = H.
Applying Theorem 9 we get a unique isogeny ρ : E ′ → ˆ︁E s.t. ψ = ρ ◦ ϕ.
This isogeny must be of degree 1 since ψ and ϕ have the same degree (due to
separability and same kernel). In other words, ρ is an isomorphism.

If H is defined over K then so are ψ, ϕ,E ′ and ˆ︁E and subsequently ρ must be
also defined over K i.e., it is a K-isomorphism.

Remark. The elliptic curve E ′ from Theorem 14 is often denoted as E/H.

Theorem 15. Let E,E ′ be elliptic curves over K,ψ ∈ HomK(E,E ′). There exist
n ∈ N and 1 ≤ i ≤ n : λi isogenies of degree pi where pi is prime s.t.

ψ = λ1 ◦ · · · ◦ λn.

Proof. This is an expanded version of the proof in [Gal12], Theorem 25.1.2.
We can assume that ψ is separable because if char(K) = 0 then every isogeny is

separable. If char(K) = p > 0 then by Theorem 10 we can decompose ψ = ψ′ ◦ϕe
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for some e ≥ 0 where ψ′ is separable and defined over K since ϕe is defined over
K and deg(ϕ) = p.

By Theorem 14 ψ is determined by its kernel. Let G = Ker(ψ). If there exists
n ∈ Z s.t. E[n] ≤ G then by Theorem 9 we can decompose ψ = ψ′ ◦ [n].

[n] can be decomposed into isogenies of prime degree in the following way since
n can be factored into primes. Let l be a prime, [l] has a kernel G ≥ E[l] ∼= Zl×Zl.
We can take a point of order l from E[l] which will define a separable isogeny ψ
with Ker(ψ) ≤ E[l]. By Theorem 9 we get ψ′ s.t. [l] = ψ′ ◦ ψ where ψ is clearly
defined over K and of degree l (same for ψ′).1

From now on assume there doesn’t exist an n ∈ N s.t. E[n] ≤ G.
Let l be a prime s.t. l | |G|. There exists P ∈ G of order l which forms a

subgroup ⟨P ⟩ of order l.
First, we want to show that ⟨P ⟩ is defined over K. G is assumed to be defined

over K i.e., for any σ ∈ Gal(K/K) : σ(P ) ∈ G. But clearly by properties of σ
the point σ(P ) also has an order l i.e., σ(P ) ∈ E[l] ∼= Zl × Zl. If l = char(K),
then we have a contradiction because either E[l] = Zl which would mean that
E[l] ≤ G or E[l] = {O}.

Therefore E[l] ⊈ G and Zl
∼= ⟨P ⟩ ≤ G. Thus σ(P ) (which also generates a

subgroup of prime order) must generate the same as P i.e., σ(P ) ∈ ⟨P ⟩.
Now we use Theorem 14 to get an isogeny ψ1 : E → E1 = E/⟨P ⟩ s.t.

Ker(ψ1) = ⟨P ⟩. This isogeny is defined over K due to our previous paragraph.
Consider the image of G ≤ E(K) under ψ1. Since isogeny is (more precisely
induces) a group homomorphism, we can see that by first isomorphism theorem
ψ1(G) ≤ E1(K) and ψ1(G) ∼= G/⟨P ⟩.

Consider another isogeny ψ2 : E1 → E2 s.t. Ker(ψ2) = ψ1(G) ∼= G/⟨P ⟩. Let’s
look at ψ2 ◦ ψ1. By definition Ker(ψ2 ◦ ψ1) = G thus by Theorem 14 there must
exist a K-isomorphism λ : E2 → E ′ s.t. ψ = λ ◦ ψ2 ◦ ψ1. This can be also seen
with a little bit of abusing the notation:

ψ2 ◦ ψ1 : E → E1 → E2

E1 = E/⟨P ⟩
E2 = E1/ψ1(G) = (E/⟨P ⟩)/ψ1(G) ∼= (E/⟨P ⟩)/(G/⟨P ⟩) ∼= E/G

⇐⇒
ψ2 ◦ ψ1 ∼= ψ : E → E/G.

ψ1 has prime degree. Repeat the steps for λ ◦ψ2. This process will eventually
end since we always lower the degree.

Since every isogeny can be decomposed into isogenies of prime degree, we
present only a simplified version of Vélu formulae concerning only kernels of odd
order. Note that there exist formulae also for a kernel of order 2. For details see
[Sut19], Lecture 6, Theorem 6.13 (we present the Theorem 6.15).

Note that these formulae are specific to the model of the elliptic curve. In
our case we use the short Weierstrass form but these formulae can be modified
to work, for example, for Montgomery curves.

1This part is a proof of the existence of a dual isogeny.
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Theorem 16 (Vélu). Let E be an elliptic curve over K given by y2 = x3+Ax+B
and let G ≤ E(K) be a subgroup of an odd order. For any P ∈ E(K) denote by
xP its affine x-coordinate and similarly for yP . ∀P = (xP , yP ) ∈ G define:

tP = 3x2
P + A,

uP = 2y2
P ,

wP = uP + tPxP ,

and also define:

t =
∑︂

P ∈G\{O}
tP ,

w =
∑︂

P ∈G\{O}
wP ,

r(x) = x+
∑︂

P ∈G\{O}

(︄
tP

x− xP

+ uP

(x− xP )2

)︄
.

Then the rational map ψ = (r(x), r′(x)y), where r′(x) is the derivative of r(x),
defines a separable isogeny E → E ′ s.t. Ker(ψ) = G where E ′ is given by y2 =
x3 + A′x+B′, where A′ = A− 5t, B′ = B − 7w.

Proof. A modified version of [Gal12] Theorem 25.1.6.

Remark. Since y2
P can be expressed as a combination of xP , during the computa-

tion we only need to work with x-coordinates of points of G.
In the following claim we automatically assume (as stated at the beginning of

this chapter) that q = pe for some p prime and e ∈ N.

Claim 17. Under the assumptions of Theorem 16. If K = Fq and ϕe(G) = G,
then E ′ and ψ are defined over Fq.

Proof. Since ϕe permutes the coordinates of points in G, then we can see that the
formulae for t, w, r(x) are the same when the order of points is changed. From
that we can see that the coefficients A′, B′ and also the rational functions of ϕ
are fixed by ϕe i.e., they are elements of Fq.

Example 2 (Isogeny computation with predefined kernel). Let E : y2 = x3 +x+1
(A = 1 = B) and K = F101. Assume we know a point P = (46, 25) ∈ E(F101) is
of order 5 i.e., G = ⟨P ⟩ ≤ E(F101) is a subgroup of order 5.

We want to compute the isogeny ψ : E → E ′ with kernel G using Theorem
16 where E ′ : y2 = x3 + A′x+B′.

First, we compute G:

G = {O, P, 2P, 3P, 4P} = {O, P, 2P,−2P,−P}
= {(0, 1), (46, 25), (86, 67), (86, 34), (46, 76)}.

Next let’s calculate t, w, r(x):
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Point P tP uP wP

P 87 38 0
2P 70 90 50
3P 70 90 50
4P 87 38 0

t = 2(87 + 70) = 11, w = 2(0 + 50) = 100 = −1
=⇒

A′ = 47, B′ = 8,

r(x) = x+ 2
(︄

87
x− 46 + 38

(x− 46)2

)︄
+ 2

(︄
70

x− 86 + 90
(x− 86)2

)︄
.

After transforming r(x) into the standard form (s.t. the numerator and the
denominator are coprime) we get a form:

r(x) = x5 + 39x4 + 97x3 + 81x2 + 88x+ 75
x4 + 39x3 + 86x2 + 57x+ 87 ,

r(x)′ = x6 + 8x5 + 95x4 + 89x3 + 37x2 + 31x+ 86
x6 + 8x5 + 5x4 + 74x3 + 85x2 + 90x+ 65 .

We have completed the calculation. Now we have an explicit form of ψ =
(r(x), yr(x)′). This is an isogeny between curves y2 = x3 +x+1, y2 = x3 +47x+8
and is of degree 5 with kernel G.
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2. Supersingular curves and
endomorphism ring
Most of this chapter follows [Sut19], Lectures 6, 13, 14. We provide some para-
phrased proofs from these lectures because we feel they are needed to paint a
better picture of the theory.

Definition 27. Let (E,O) be an elliptic curve over K, char(K) = p > 0. We
say E is supersingular if ∃e ∈ N s.t. E[pe] = {O}. If E is not supersingular we
say E is ordinary.

Remark. Due to Theorem 13 if ∃e ∈ N s.t. E is supersingular, then ∀n ∈ N :
E[pn] = {O}.

Theorem 18. Let (E1,O1), (E2,O2) be elliptic curves over K s.t. they are isoge-
nous by ψ ∈ HomK(E1, E2). Then E1 is supersingular iff E2 is supersingular.

Proof. This proof is a paraphrased version of [Sut19], Lecture 14, Theorem 14.2.
By definition E1 is supersingular iff Ker([p]1) = {O1} ⇐⇒ degs([p]1) = 1 by

Theorem 8. Since all of the following maps are isogenies, we have:

[p]2 ◦ ψ = ψ ◦ [p]1 =⇒
degs([p]2 ◦ ψ) = degs(ψ ◦ [p]1)

⇐⇒
degs([p]2) degs(ψ) = degs(ψ) degs([p]1)

⇐⇒
degs([p]2) = degs([p]1).

Thus degs([p]2) = 1 as well.

Theorem 19. Let E be an elliptic curve over K, ψ ∈ EndK(E). Then

ψ ⊕ ψ̂ = [1] ⊕ [deg(ψ)] ⊖ [deg([1] ⊖ ψ)].

Proof. This proof is an expanded version of [Sut19], Lecture 7, Lemma 7.16.
Using Theorem 12 (c) and (f) we have [deg([1] ⊖ψ)] = ( ˆ︂[1] ⊖ ψ) ◦ ([1] ⊖ψ) =

(ˆ︂[1] ⊖ ˆ︁ψ) ◦ ([1] ⊖ ψ) = ([1] ⊖ ˆ︁ψ) ◦ ([1] ⊖ ψ). Now only using the arithmetic of
EndK(E) and (c) we get:

([1] ⊖ ˆ︁ψ) ◦ ([1] ⊖ ψ) = ([1] ◦ [1]) ⊖ ([1] ◦ ψ) ⊖ ( ˆ︁ψ ◦ [1]) ⊕ ( ˆ︁ψ ◦ ψ) =
= [1] ⊖ ψ ⊖ ˆ︁ψ ⊕ [deg(ψ)] = [1] ⊖ (ψ ⊕ ˆ︁ψ) ⊕ [deg(ψ)] =⇒

[deg([1] ⊖ ψ)] = [1] ⊖ (ψ ⊕ ˆ︁ψ) ⊕ [deg(ψ)]
⇐⇒

ψ ⊕ ˆ︁ψ = [1] ⊕ [deg(ψ)] ⊖ [deg([1] ⊖ ψ)].
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Corollary. There exists a unique n ∈ N s.t. ψ ⊕ ˆ︁ψ = [n]. Specifically, n =
1 + deg(ψ) − deg([1] ⊖ ψ).

Definition 28. Let E be an elliptic curve over K, ψ ∈ EndK(E). Then the
trace of ψ (denoted as Tr(ψ)) is defined as Tr(ψ) = 1 + deg(ψ) − deg([1] ⊖ ψ).

Remark. Using Theorem 12 (d), (f) we get that Tr(ψ) = Tr( ˆ︁ψ) because ψ⊕ ˆ︁ψ =
[Tr(ψ)] = ˆ︂[Tr(ψ)] = ˆ︂ψ ⊕ ˆ︁ψ = ˆ︁ψ ⊕ ˆ︁ˆ︁ψ(= ˆ︁ψ ⊕ ψ).

Also let τ ∈ EndK(E), then Tr(ψ⊕ τ) = Tr(ψ) + Tr(τ) because [Tr(ψ⊕ τ)] =
(ψ ⊕ τ) ⊕ ˆ︂(ψ ⊕ τ) = ψ ⊕ τ ⊕ ˆ︁ψ ⊕ ˆ︁τ = ψ ⊕ ˆ︁ψ ⊕ τ ⊕ ˆ︁τ = [Tr(ψ)] ⊕ [Tr(τ)] =
[Tr(ψ) + Tr(τ)].

We have shown that EndK(E) is a ring. It can be looked at as a Z-algebra
with operations (⊕, ◦). We will now extend this algebra into a Q-algebra using a
tensor product of algebras.
Remark. If R is an integral domain, A is a R-algebra and B is the fraction field of
R, then every element of A⊗RB can be expressed as a⊗ b for some a ∈ A, b ∈ B.

Definition 29. Let E be an elliptic curve over K. The endomorphism algebra
of E is End0

K(E) = EndK(E) ⊗Z Q.

Using the previous remark, we can see that every element of End0
K(E) can

be expressed as ψ ⊗ a where ψ ∈ EndK(E), a ∈ Q. End0
K(E) is also clearly a

Q-algebra.

Lemma 20. End0
K(E) is a domain.

Proof. Assume (ψ⊗a)(τ⊗b) = 0 and ψ, τ non-zero in EndK(E) and a, b ̸= 0 ∈ Q.

(ψ ⊗ a)(τ ⊗ b) = (ψ ◦ τ) ⊗ (ab).

So, either ψ ◦ τ = [0] ∈ EndK(E) or ab = 0 ∈ Q. Since all of them are assumed
to be non-zero and Q is clearly a domain and so is EndK(E) by Theorem 7 we
have a contradiction.

Because Q and EndK(E) are torsion-free Z-algebras, there exist injective
homomorphisms which identify elements of EndK(E) and Q with elements of
End0

K(E):

α : EndK(E) → End0
K(E),

ψ ↦→ ψ ⊗ 1,
β : Q → End0

K(E),
a ↦→ [1] ⊗ a.

Note that since EndK(E) is a Z-algebra we have an overlap of images of these
two injective maps. For example α([2]) = [2] ⊗ 1 = (2[1]) ⊗ 1 = [1] ⊗ 2 = β(2).

From now on we will use a simplified notation for elements of End0
K(E). For

a ∈ Q, ψ ∈ EndK(E) : aψ corresponds to the element ψ⊗ a. Also, we extend the
definition of a dual isogeny on these elements as follows: ˆ︂aψ = a ˆ︁ψ. Also, since we
have an embedding of Q and EndK(E) into End0

K(E), we consider them subsets
of End0

K(E).
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Claim 21. Let a ∈ Q. Consider a as an element of End0
K(E) i.e., a = a[1] = β(a)

in the notation above. Then for every x ∈ End0
K(E) : xa = ax.

Proof. x = bψ, b ∈ Q, ψ ∈ EndK(E). Then using the fact that [n] ◦ ψ = ψ ◦ [n]
for n ∈ N, ψ ∈ EndK(E):

xa = (ψ ⊗ b)([1] ⊗ a) = (ψ ◦ [1]) ⊗ (ba) = ([1] ◦ ψ) ⊗ (ab) =
= ([1] ⊗ a)(ψ ⊗ b) = ax.

We will also extend the definition of Tr and define the norm N.

Definition 30. Let x = aψ ∈ End0
K(E). Define the norm of x as the element

N(x) = x · ˆ︁x. Define the trace of x as the element Tr(x) = x+ ˆ︁x.

Lemma 22. Let x ∈ End0
K(E). Then:

(a) N(x) ≥ 0 ∈ Q.

(b) N(x) = 0 ⇐⇒ x = 0.

(c) N(x) = N(ˆ︁x).

(d) y ∈ End0
K(E) : N(xy) = N(x)N(y).

Proof. This proof is an expanded version of [Sut19], Lecture 13, Lemma 13.7.
x = aψ for some a ∈ Q, ψ ∈ EndK(E) then using the definitions and Theorem

12 (c)

x · ˆ︁x = aψ · a ˆ︁ψ = (ψ ⊗ a)( ˆ︁ψ ⊗ a) = (ψ ◦ ˆ︁ψ) ⊗ a2 =
= [deg(ψ)] ⊗ a2 = [1] ⊗ (a2 deg(ψ)).

So, we identify N(x) with the rational number a2 deg(ψ), which is always non-
negative. This proves (a) and (b) follows using deg(ψ) = 0 ⇐⇒ ψ = [0].

Consider the element x · N(ˆ︁x) and use Claim 21:

x · N(ˆ︁x) = (ψ ⊗ a)N(ˆ︁x) = (ψ ⊗ a)( ˆ︁ψ ⊗ a)(ψ ⊗ a) = N(x)(ψ ⊗ a) =
= (ψ ⊗ a)N(x).

Now, thanks to End0
K(E) being a domain, we get x ·N(ˆ︁x) = x ·N(x) ⇐⇒ N(ˆ︁x) =

N(x). This proves (c).
For the rest, we use Theorem 12 (f) and Claim 21:

N(xy) = xy · ˆ︂xy = xy · ˆ︁yˆ︁x = x · N(y) · ˆ︁x = xˆ︁x · N(y) = N(x)N(y).

Tr has similar properties. We list them without proof since the proof uses the
same techniques as the previous claim.

Lemma 23. Let x ∈ End0
K(E). Then:

(a) Tr(x) ∈ Q.
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(b) Tr(x) = Tr(ˆ︁x).

(c) y ∈ End0(E) : Tr(x+ y) = Tr(x) + Tr(y).

(d) a ∈ Q : Tr(ax) = aTr(x).

Lemma 24. End0
K(E) is a division ring i.e., ∀x ∈ End0

K(E) : ∃!x−1 ∈ End0
K(E) :

x−1x = xx−1 = 1.

Proof. This proof is a paraphrased version of [Sut19], Lecture 13, Lemma 13.8.
Let x ∈ End0

K(E). Set y = 1
N(x) ˆ︁x. Then using Claim 21:

xy = x
1

N(x)
ˆ︁x = 1

N(x)x
ˆ︁x = 1

N(x)N(x) = 1 = yx.

Definition 31. Let ψ ∈ End0
K(E). The characteristic polynomial of ψ is the

polynomial:

x2 − Tr(ψ)x+ N(ψ) ∈ Q[x].

Remark. If ψ ∈ EndK(E) then the characteristic polynomial of ψ is a polynomial
in Z[x] due to the way that ψ is embedded into End0

K(E).
Remark. If ψ ∈ EndK(E) then the characteristic polynomial of ψ can be written
as:

x2 − Tr(ψ)x+ deg(ψ) ∈ Z[x].

since N(ψ) = ψ ˆ︁ψ = [deg(ψ)].

Lemma 25. Let ψ ∈ End0
K(E). Then ψ, ˆ︁ψ are the roots of the characteristic

polynomial of ψ in End0
K(E).

Proof. This proof is a paraphrased version of [Sut19], Lecture 13, Lemma 13.10.
Using the arithmetic of End0

K(E):

0 = (ψ − ψ)(ψ − ˆ︁ψ) = ψ2 − ψ ˆ︁ψ − ψ2 + ψ ˆ︁ψ =
= ψ2 − ψ( ˆ︁ψ + ψ) + N(ψ) = ψ2 − ψTr(ψ) + N(ψ) = ψ2 − Tr(ψ)ψ + N(ψ).

For ˆ︁ψ the proof is similar because the trace and norm are the same for dual
isogenies.

Definition 32. An algebra Q over a field K is a quaternion algebra if there exist
i, j ∈ Q s.t. {1, i, j, ij} is a basis of Q and i2, j2 ∈ Q∗, −ij = ji.

Consider the subspace Q0 of Q generated by {1} and let Q1 be the subspace
of Q generated by {i, j, ij}. Every element α ∈ Q can be decomposed into
α = α0 + α1 where α0 ∈ Q0, α1 ∈ Q1. Define ˆ︁α = α0 − α1 and call it the
conjugate of α. Using this conjugate map, we can similarly define a trace and a
norm on Q.

For α ∈ Q define Tr(α) = α + ˆ︁α and N(α) = αˆ︁α. It can be shown that they
have the same properties as their counterparts in End0

K(E). Let α, β ∈ Q, then
Tr(α),N(α) ∈ K and Tr(α + β) = Tr(α) + Tr(β),N(αβ) = N(α)N(β).
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Theorem 26. Let E be an elliptic curve over K. End0
K(E) is isomorphic to one

of the following:

(a) The field Q.

(b) An imaginary quadratic field Q(i), i2 < 0.

(c) A quaternion algebra Q(i, j), i2 < 0, j2 < 0.

Proof. [Sut19] Lecture 13, Theorem 13.17.

Theorem 27. Let E be an elliptic curve over K. EndK(E) is a free Z-module
of rank r where r = dimQ(End0

K(E)) and r ∈ {1, 2, 4}.

Proof. [Sut19] Lecture 13, Corollary 13.20.

Corollary. EndK(E) is an order in End0
K(E).

Proof. By definition End0
K(E) is Q-algebra and Theorem 26 tells us its dimension

is finite. EndK(E) is clearly is subring of End0
K(E) (more precisely the image of

α). Using Theorem 27 we get that EndK(E) is a Z-module of the same rank (as
the dimension).

For practical purposes we have to work with finite fields Fq where q = pe

where p is prime and e ∈ N. We will introduce a few properties specific to curves
over finite fields.

From now on, assume q = pe where p is prime and e ∈ N.
Since K = Fq is a perfect field, then ϕe is an identity on K which implies

E = E(e) for any elliptic curve E over K.
Remark. Let E be an elliptic curve over Fq. Then ϕe (as defined above) is an
element of End(E).

This does not necessarily mean that End(E) cannot be isomorphic to Z.

Theorem 28. Let E be an elliptic curve over K = Fq, n ∈ Z. Then [n] ∈ EndKE
is inseparable ⇐⇒ p | n.

Proof. [Sil09] Chapter III, Corollary 5.5.

Theorem 29. Let E1, E2 be elliptic curves over K = Fq and
ψ, ρ ∈ HomK(E1, E2). Assume ψ is inseparable, then ψ⊕ρ is inseparable ⇐⇒ ρ
is inseparable.

In other words, the sum of two inseparable isogenies is inseparable. The sum
of an inseparable isogeny and separable is separable.

Proof. Applying Theorem 10 we get that there exist n1, n2 ∈ Z : n1 > 0, n2 ≥ 0,
λ1 ∈ HomK(E(n1)

1 , E2) and λ2 ∈ HomK(E(n2)
1 , E2) s.t. λ1, λ2 separable:

ψ = λ1 ◦ ϕn1 ,

ρ = λ2 ◦ ϕn2

=⇒
ψ ⊕ ρ = (λ1 ◦ ϕn1) ⊕ (λ2 ◦ ϕn2).
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If ρ is inseparable then n2 > 0 and

ψ ⊕ ρ = ((λ1 ◦ ϕn1−1) ⊕ (λ2 ◦ ϕn2−1)) ◦ ϕ

which is clearly inseparable (for example because the degree of a composition is
a product of degrees).

If ψ⊕ρ is inseparable then ⊖(ψ⊕ρ) is also inseparable. Then ψ⊕(⊖(ψ⊕ρ)) =
⊖ρ is inseparable (since it’s a sum of two inseparable isogenies which we have just
proved). Also ⊖ρ is inseparable ⇐⇒ ρ is inseparable.

Theorem 30. Let E be an elliptic curve over Fq. E is supersingular iff
Tr(ϕe) ≡ 0 mod p.

Proof. This proof is an expanded version of [Sut19], Lecture 14, Theorem 14.3.
It can be easily shown that [p] = ˆ︁ϕ ◦ ϕ. E is supersingular iff degs([p]) = 1

(proof of Theorem 18) also deg( ˆ︁ϕ) = deg(ϕ) = p. Therefore, E is supersin-
gular =⇒ degs([p]) = degs( ˆ︁ϕ) = 1 =⇒ degi( ˆ︁ϕ) > 1 i.e., ˆ︁ϕ is inseparable.
By definition and using properties of dual isogenies [Tr(ϕe)] = ϕe ⊕ ˆ︁ϕe ⇐⇒
[Tr(ϕe)] ⊖ ϕe = ˆ︁ϕe. If ˆ︁ϕ is inseparable, then also ˆ︁ϕe is inseparable. Therefore,
[Tr(ϕe)] ⊖ ϕe is inseparable and, by Theorem 29, it must be that [Tr(ϕe)] is
inseparable since ⊖ϕe is inseparable. Finally, by Theorem 28, it must be that
p | Tr(ϕe) ⇐⇒ Tr(ϕe) ≡ 0 mod p.

On the other hand, p | Tr(ϕe) =⇒ ˆ︁ϕe inseparable =⇒ ˆ︁ϕ inseparable
⇐⇒ degi( ˆ︁ϕ) > 1 =⇒ degs( ˆ︁ϕ) = 1 and ϕ is always inseparable so degs(ϕ) = 1.
This leaves the only option for degs([p]) = 1 which is equivalent to saying E is
supersingular.

Theorem 31. Let E be an elliptic curve over Fq. Then |E(Fq)| = q+ 1 − Tr(ϕe)
and |Tr(ϕe)| ≤ 2√

q.

Proof. [Sil09] Chapter V, Theorem 1.1.

Claim 32. Let E be an elliptic curve over Fp, p > 3. E is supersingular ⇐⇒
Tr(ϕ) = 0 ⇐⇒ |E(Fp)| = p+ 1.

Proof. The equivalence Tr(ϕ) = 0 ⇐⇒ |E(Fp)| = p + 1 is a straight up conse-
quence of Theorem 31 in case q = p.

If Tr(ϕ) = 0 then by Theorem 30 E is supersingular.
On the other hand, assume E is supersingular. Again, Theorem 30 tells us

that Tr(ϕ) ≡ 0 mod p i.e., Tr(ϕ) = kp for some k ∈ Z. The other result of
Theorem 31 gives us that |kp| ≤ 2√

p ⇐⇒ |k|√p ≤ 2. Clearly for any p > 5
this does not hold unless k = 0 ⇐⇒ Tr(ϕ) = 0.

The structure of the group of E(Fq) for a supersingular elliptic curve is given
by the following theorem.

Theorem 33. Let E be a supersingular elliptic curve over Fq. Then

(a) If Tr(ϕe)2 ∈ {q, 2q, 3q}, then E(Fq) is cyclic.

(b) If Tr(ϕe)2 = 4q, then we have two possible cases.

(a) If Tr(ϕe) = 2√
q, then E(Fq) ∼= Z√

q−1 × Z√
q−1.
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(b) If Tr(ϕe) = −2√
q, then E(Fq) ∼= Z√

q+1 × Z√
q+1.

(c) If Tr(ϕe) = 0, then either E(Fq) is cyclic or E(Fq) ∼= Z2 × Z q+1
2

.

Proof. [Sch87] Lemma 4.8.

Lemma 34. Let α, β ∈ End0
K(E), α /∈ Q where E is an elliptic curve over K. If

αβ = βα, then β ∈ Q(α). Also, if α and Tr(α) = 0, then α2 = −N(α) < 0.

Proof. This proof is an expanded version of [Sut19], Lecture 13, Corollary 13.11
and Lemma 13.18.

α is a root of its characteristic polynomial by Claim 25 i.e., α2 − Tr(α)α +
N(α) = 0 ⇐⇒ α2 = −N(α). α2 is non-zero because End0

K(E) is a division ring
and α is non-zero (because α /∈ Q). By Lemma 22 −N(α) < 0 since α is non-zero.

W.l.o.g. we can assume that Tr(α) = 0 = Tr(β) because we can replace α
with α− Tr(α)

2 and by properties of the trace:

Tr
(︄
α− Tr(α)

2

)︄
= Tr(α) − Tr(Tr(α))

2
Tr(Tr(α)) = Tr(α + ˆ︁α) = 2(α + ˆ︁α) = 2Tr(α) =⇒

Tr
(︄
α− Tr(α)

2

)︄
= Tr(α) − 2Tr(α)

2 = 0.

Also, we can w.l.o.g. replace β (already chosen s.t. Tr(β) = 0) with γ = β −
Tr(αβ)

2α2 α and get Tr(αγ) = 0 because

Tr(γ) = Tr(β) − Tr(αβ)
2α2 Tr(α) = 0 − Tr(αβ)

2α2 · 0 = 0

αγ = αβ − Tr(αβ)
2 =⇒

Tr(αγ) = Tr(αβ) − Tr(Tr(αβ))
2 = Tr(αβ) − Tr(αβ + ˆ︃αβ)

2 =

Tr(αβ) − Tr(αβ) + Tr(ˆ︃αβ)
2 = Tr(αβ)

2 − Tr(ˆ︃αβ)
2 = 0.

To sum up we have Tr(α) = 0 = Tr(γ) and also Tr(αγ) = 0. This implies that
α = −ˆ︁α, γ = −ˆ︁γ and αγ = −ˆ︂αγ = −ˆ︁γ ˆ︁α =⇒ αγ = −γα.

Now, we use our assumption αβ = βα. Let t = Tr(αβ)
2α2 ∈ Q:

0 = αγ + γα = α(β − tα) + (β − tα)α = αβ − tα2 + βα − tα2

⇐⇒
0 = 2αβ − 2tα2 ⇐⇒ 2tα2 = 2αβ =⇒ β ∈ Q(α).

Theorem 35. Let E be an elliptic curve over K = Fq. If ϕe /∈ Z (using the
identification of Z and EndK(E) in End0

K(E) i.e., there does not exist m ∈ Z
s.t. [m] = ϕe) then End0

K(E) ∼= Q(ϕe) ∼= Q(
√
D) is an imaginary quadratic field

where D = (Tr(ϕe))2 − 4q < 0.
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Proof. This proof is a paraphrased version of [Sut19], Lecture 14, Theorem 14.6.
The characteristic polynomial of ϕe is:

x2 − Tr(ϕe)x+ deg(ϕe) ∈ Z[x].

The discriminant of this quadratic polynomial is D = (Tr(ϕe))2 − 4 deg(ϕe). We
know deg(ϕe) = pe = q i.e., D = (Tr(ϕe))2 − 4q. Therefore, Q(

√
D) ∼= Q(ϕe).

Since we assume ϕe /∈ Z and ϕe is an algebraic integer then it must be ϕe /∈ Q.
This implies D ̸= 0 ⇐⇒ (Tr(ϕe))2 ̸= 4q and by Theorem 31 it must be D < 0.
We have shown that Q(ϕe) is an imaginary quadratic field.

Take α ∈ End0
K(E) using our definitions we have α = aψ where a ∈ Q, ψ ∈

EndK(E). Since K = Fq we have ψϕe = ϕeψ (for details see the proof of Theorem
42). Applying lemma 34 and 21 we get α ∈ Q(ϕe). This completes the proof.

Lemma 36. Let E be an elliptic curve over K = Fq. If E is ordinary then
ϕe /∈ Z.

Proof. This proof is inspired by [Sut19], Lecture 14, Corollary 14.7.
Assume ϕe ∈ Z. Consider the characteristic polynomial of ϕe:

x2 − Tr(ϕe)x+ N(ϕe) ∈ Z[x].

The discriminant of the polynomial is D = Tr(ϕe)2 − 4N(ϕe) = Tr(ϕe)2 −
4 deg(ϕe) = Tr(ϕe)2 − 4q.

If D > 0, then Tr(ϕe)2 > 4q which contradicts Theorem 31. So, it must be
that D ≤ 0.

If D < 0, then the roots of the polynomial are −Tr(ϕe)±
√

D
2 and one of the

roots is ϕe which we assume to be an element of Z. This is a contradiction since
−Tr(ϕe) ±

√
D /∈ Q.

It must be that D = 0 ⇐⇒ Tr(ϕe)2 = 4q =⇒ ±Tr(ϕe) = 2√
q. Tr(ϕe) ∈ Z

so √
q = √

pe ∈ Z =⇒ e ≡ 2 mod p and ±Tr(ϕe) = 2p e
2 =⇒ Tr(ϕe) ≡ 0

mod p ⇐⇒ E supersingular by Claim 32 which is a contradiction.
Claim 37. Let E be a supersingular elliptic curve over K = Fp, p > 3. Then
End0

K(E) ∼= Q(ϕ) ∼= Q(
√

−4p) ∼= Q(√−p).

Proof. Using Claim 32 we know that Tr(ϕ) = 0 ∈ Z. We want to apply Theorem
35 so we will use the same argument as in Lemma 36.

To contrary assume ϕ ∈ Z. The characteristic polynomial of ϕ:

x2 − Tr(ϕ)x+ N(ϕ) ∈ Z[x].

The discriminant of the polynomial in this case is D = Tr(ϕ)2 − 4p = −4p. The
roots of the polynomial are ±

√
D

2 . Since ϕ is one of the roots and both roots are
clearly not in Z we have a contradiction.

Thus ϕ /∈ Z and applying Theorem 35 we get the desired result.
Theorem 38. Let E be an elliptic curve over K = Fq, and End0

K(E) ∼= Q(ϕe)
where ϕe /∈ Z (i.e., End0

K(E) is an imaginary quadratic field). Denote OE the
ring of integers of End0

K(E). Then

Z[ϕe] ⊆ EndK(E) ⊆ OE

where |OE : EndK(E)| | |OE : Z[ϕe]|.
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Proof. The inclusions are clear since we have shown that EndK(E) is an order in
End0

K(E) but since it is an imaginary quadratic field, OE is its unique maximal
order therefore it contains all other orders.

Z[ϕe] is an order in End0
K(E) which is assumed to be a Q-algebra of dimension

2 and Z[ϕe] is clearly its subring which is a Z-module of rank 2 since ϕe /∈ Z.

Theorem 39. Let E be a supersingular curve over Fp where p > 3. Then

(a) EndFp(E) = Z[ϕ] = OK if p ≡ 1 mod 4.

(b) EndFp(E) ∈ {Z[ϕ],OK} if p ≡ 3 mod 4.

where K is an imaginary quadratic field s.t. K ∼= End0
Fp

(E).

Proof. By Claim 37 we already know that End0
Fp

(E) is an imaginary quadratic
field. We know EndFp(E) is an order in this field and by Theorem 38 we know

Z[ϕ] ⊆ EndFp(E) ⊆ OK .

By Theorem 1 (b) we know OK = Z
[︂

dK+
√

dK

2

]︂
.

First assume p ≡ 1 mod 4. Then by the definition of dK we get dK = −4p.

Z
[︄
dK +

√
dK

2

]︄
= Z

[︄
−4p+

√
−4p

2

]︄
= Z

[︄
−4p+ 2√

−p
2

]︄
= Z

[︂√
−p
]︂
.

Note that we always identify ϕ (the Frobenius endomorphism of the elliptic curve)
with the element √

−p of K due to the isomorphisms from Theorem 35 and
Claim 37. Thus OK = Z[ϕ] and the only option for EndFp(E) is that its equal
(isomorphic) to Z[ϕ]. This proves (a).

Now p ≡ 3 mod 4. dK = −p =⇒ OK = Z
[︂

−p+
√

−p
2

]︂
. Clearly the conductor

of Z[ϕ] = Z[√−p] is 2 in OK . The only possibilities for EndFp(E) by Theorem
38 are Z[ϕ] or OK .

Theorem 40. Let E be a supersingular elliptic curve over K s.t. char(K) = p >
0. Then j(E) ∈ Fpi where i ∈ {1, 2}.

Proof. This proof is an expanded version of [Sut19], Lecture 14, Theorem 14.16.
E supersingular =⇒ [p] = ˆ︁ϕ ◦ ϕ is inseparable =⇒ ˆ︁ϕ inseparable. Note

that ˆ︁ϕ : E(1) → E. By Theorem 10 we have n ∈ N and λ ∈ HomK((E(1))(n), E)
separable:

ˆ︁ϕ = λ ◦ ϕn.

Since deg(ϕ) = deg( ˆ︁ϕ) it must be that n = 1 and deg(λ) = 1. By definition
of the curve E(i) we see that (E(1))(n) = E(n+1) so λ : E(2) → E is an isogeny of
degree 1. This means K(E(2)) ∼= K(E) i.e., the curves E2 and E are isomorphic.
Using Theorem 2 (b) we have j(E) = j(E(2)). Using the definitions of the j-
invariant and curves E(i) we get j(E) = j(E(2)) = j(E)p2 . Since j(E) ∈ K and
j(E) = j(E)p2 it must be that j(E) ∈ Fpi , i ∈ {1, 2} depending on the structure
of K.
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One of the consequences of the claim above is that for K s.t. char(K) = p > 0
there exist only finitely many non-isomorphic supersingular elliptic curves over
K.

In the case of K = Fq this is clear since for ordinary or supersingular curve E
its j-invariant j(E) ∈ Fq and curves with the same j-invariant are isomorphic.
Theorem 41. Let E be a supersingular elliptic curve over K s.t. char(K) = p >
0. Then End0

K(E) is a quaternion algebra.

Proof. [Sut19] Lecture 14, Theorem 14.18.
We can summarize the structure of the endomorphism algebra for finite fields

into this corollary.
Corollary. Let E be an elliptic curve over K = Fq. Then

(a) E is supersingular ⇐⇒ End0
Fq

(E) is a quaternion algebra.

(b) E is ordinary ⇐⇒ ϕe /∈ Z and End0
Fq

(E) is an imaginary quadratic field.
Remark. Consider an elliptic curve E over Fp. Although by Theorem 41 we
know that End0(E) = End0

Fp
(E) is a quaternion algebra, its Fp-rational subset

End0
Fp

(E) is an imaginary quadratic field by Claim 37.1

Definition 33. Let E be an elliptic curve over K. If EndK(E) is not isomorphic
to Z (which is equivalent to saying End0

K(E) is not isomorphic to Q) we say that
E has complex multiplication.
Remark. If K = Fq then using the previous theorem we get that every elliptic
curve over a finite field has complex multiplication.
Theorem 42. Let E be an elliptic curve over Fq, α ∈ EndFq

(E). α ◦ ϕe =
ϕe ◦ α ⇐⇒ α ∈ EndFq(E).

Proof. First let’s recall the definition of an endomorphism being defined over
Fq. Every endomorphism can be expressed as (we will use the affine represen-
tation for simplicity) a pair of rational functions defined over Fq i.e., if β is our
endomorphism then β =

(︂
A(x,y)
B(x,y) ,

C(x,y)
D(x,y)

)︂
where A,B,C,D ∈ Fq[x, y].

Let α =
(︂

A(x,y)
B(x,y) ,

C(x,y)
D(x,y)

)︂
where A,B,C,D ∈ Fq[x, y]. We know ϕe = (xq, yp)

so

α ◦ ϕe =
(︄
A(xq, yq)
B(xq, yq) ,

C(xq, yq)
D(xq, yq)

)︄
.

Let’s focus on the polynomial A (for others the reasoning is the same). On the
LHS we have A(xq, yq) ∈ Fq[x, y] i.e., if A(x, y) = ∑︁

i

∑︁
j ai,jx

iyj then A(xq, yq) =∑︁
i

∑︁
j ai,jx

iqyjq.
On the RHS ϕe ◦ α we have A(x, y)q = (∑︁i

∑︁
j ai,jx

iyj)q. Since we are in a
field of characteristic p then A(x, y)q = ∑︁

i

∑︁
j(ai,j)qxiqyjq.

This means ai,j = (ai,j)q. The Frobenius endomorphism of Fq fixes exactly Fq

i.e., ∀i, j : ai,j ∈ Fq. In other words A(x, y) ∈ Fq[x, y].
Same goes for B,C,D and we get that α is defined over Fq.
The converse is clear.

1This property is crucial to the cryptosystem CSIDH since the Fp-rational endomorphism
ring is commutative unlike the "whole" End(E)

27



Corollary. Let E be an elliptic curve over Fq. If E is ordinary then EndFq(E) =
EndFq

(E).

Proof. E being ordinary means EndFq
(E) is an order in a quadratic imaginary

field which is commutative. Applying Theorem 42 we get the desired result.

Theorem 43. Let ψ : E → E ′ be an isogeny defined over Fq between elliptic
curves E,E ′ over Fq. Then |E(Fq)| = |E ′(Fq)|.

Proof. Denote the Frobenius endomorphism of E as ϕe and the Frobenius endo-
morphism of E ′ as ϕ′e. Because ϕe fixes exactly the Fq-rational points we get
E(Fq) = Ker(ϕe ⊕ [−1]), E ′(Fq) = Ker(ϕ′e ⊕ [−1]).

By Theorem 29, the isogenies ϕe ⊕ [−1],ϕ′e ⊕ [−1] are separable (because
[−1] is always separable). That means Ker(ϕe ⊕ [−1]) = deg(ϕe ⊕ [−1]) and
Ker(ϕ′e ⊕ [−1]) = deg(ϕ′e ⊕ [−1]).

Using the same reasoning as in the proof of Theorem 42 we can prove that ψ
being defined over Fq implies

ϕ′e ◦ ψ = ψ ◦ ϕe

=⇒
(ϕ′e ⊕ [−1]) ◦ ψ = ψ ◦ (ϕe ⊕ [−1]).

If we compare degree of these isogenies, we get the desired result.

deg((ϕ′e ⊕ [−1]) ◦ ψ) = deg(ψ ◦ (ϕe ⊕ [−1]))
=⇒

deg(ϕ′e ⊕ [−1]) deg(ψ) = deg(ψ) deg(ϕe ⊕ [−1])
=⇒

deg(ϕ′e ⊕ [−1]) = deg(ϕe ⊕ [−1]) =⇒
|E ′(Fq)| = |E(Fq)|.

Remark. The other implication that arises from Theorem 43 is also true. If
|E(Fq)| = |E ′(Fq)|, then there exists an isogeny defined over Fq between E,E ′.
This is known as the Tate’s isogeny theorem.

Claim 44. Let E be a supersingular curve over Fq. Then E is Fq-isomorphic to
a supersingular elliptic curve defined over Fpi , i ∈ {1, 2}.

Proof. E is supersingular therefore by Theorem 40 j(E) ∈ Fpi . By Theorem 2
there exists an elliptic curve E ′ defined over Fpi s.t. j(E ′) = j(E) and using the
same theorem we get they are Fq-isomorphic which implies supersingularity.

Thus, over Fq we can only work with curves over a smaller field Fp2 and they
are going to have the same properties.

Next, we present a theorem which gives us the exact number of different
supersingular elliptic curves over Fq.
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Theorem 45. Let p > 3 a prime s.t. Fq is a finite field of characteristic p. Then
the number of supersingular elliptic curves over Fq (up to Fq-isomorphism) is

⌊︃
p

12

⌋︃
+

⎧⎪⎪⎨⎪⎪⎩
0 if p ≡ 1 mod 12
1 if p ≡ 5 mod 12 or p ≡ 7 mod 12
2 if p ≡ 11 mod 12.

Proof. [Sil09], Chapter V, Theorem 4.1 (c).

Claim 46. Let l ∈ Z be a prime s.t. gcd(p, l) = 1 and E an elliptic curve over
K = Fq. There exist exactly l + 1 isogenies of degree l (up to K-isomorphism)
from E to other elliptic curves over K. All of these isogenies are separable.

Proof. First, we note that every isogeny of degree l is separable. If there was an
isogeny τ of degree l that is inseparable then by Theorem 10 we get e > 0 ∈ N :
τ = ψ ◦ ϕe and l = deg(τ) = deg(ψ) deg(ϕ)e = deg(ψ)pe. That is a contradiction
since p ∤ l.

Let τ be an isogeny of degree l from E. Now we use Theorem 14 and the fact
that for separable isogenies deg(τ) = |Ker(τ)|. Since l is a prime then Ker(τ) ≤ E
is a subgroup of prime order thus cyclic. This means Ker(τ) ≤ E[l].

Theorem 13 states E[l] ∼= Zl × Zl. The problem is therefore equivalent to
finding out how many subgroups of order l the group G = Zl × Zl has. Every
non-identity element of G has order l. Thus, there are l2 − 1 elements of order
l and every such element "goes over" l − 2 other elements, which are of order l,
and the identity element. Looking at the number of equivalence classes we have

l2−1
l−2+1 = l + 1 equivalence classes which correspond to different subgroups of E[l]
which correspond to different isogenies.
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3. Ideal class group action
In this chapter we will be working with elliptic curves over C to develop a what
is called the ideal class group action upon elliptic curves. In the next chapter we
will translate this theory to elliptic curves over finite fields.

Working with elliptic curves over C requires a knowledge of complex analysis.
We will present only the most important results. The point of this chapter is to
introduce the reader to the origin of the ideal class group action.

This chapter mainly follows [Sut19], Lectures 15 − 18, 21.

3.1 Elliptic curves over C
Definition 34. Let L,L′ be lattices. We say L,L′ are homothetic if there exists
z ∈ C \ {0} s.t. L = zL′.

Remark. Being homothetic is clearly an equivalence relation. Also, if L = [α, β],
L′ = [γ, δ], then L,L′ are homothetic iff there exists z ∈ C \ {0} s.t. α = zγ, β =
zδ.

Definition 35. Let L be a lattice. The Weierstrass ℘-function of a lattice L is
defined as

∀z ∈ C : ℘(z, L) = 1
z2 +

∑︂
α∈L\{0}

(︄
1

(z − α)2 − 1
α2

)︄
.

Remark. Usually the lattice L in the definition of its Weierstrass ℘-function is
known so we usually write ℘(z) instead of ℘(z, L). The symbol "℘" is a curly
letter "p". Because of that it is also sometimes called the Weierstrass p-function.

Definition 36. Let L be a lattice, k ∈ Z, k > 2. The weight-k Eisenstein series
for L is defined as

Gk(L) =
∑︂

α∈L\{0}

1
αk
.

Remark. For any lattice L and k ∈ Z, k > 2 the series Gk(L) converges absolutely.
This means Gk(L) has always a defined value.

Theorem 47. Let L be a lattice. The function ℘(z) satisfies the differential
equation

℘′(z)2 = 4℘(z)3 − g2(L)℘(z) − g3(L)

where g2(L) = 60G4(L) and g3(L) = 140G6(L).

Proof. [Sut19] Lecture 15, Theorem 15.29.

Notice the familiarity between the Weierstrass equation of an elliptic curve
and this differential equation. If we set x = ℘(z), y = ℘′(z) then we have

y2 = 4x3 − g2(L)x− g3(L)
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Define A = −g2(L)
4 , B = −g3(L)

4 then we get

y2 = 4x3 + 4Ax+ 4B

which is a curve C-equivalent to the Weierstrass equation

y2 = x3 + ax+ b

where a, b ∈ C.
Now we need to find out under what circumstances is this actually an equation

defining an elliptic curve over C i.e., when is this curve smooth. We know that
a general Weierstrass curve is smooth iff its discriminant is not 0. This process
yields the condition that ∆(L) = g2(L)3 − 27g3(L)2 must not be zero.

Definition 37. Let L be a lattice. The discriminant of L is defined as

∆(L) = g2(L)3 − 27g3(L)2

Theorem 48. Let L be a lattice. The discriminant of L is non-zero.

Proof. [Sut19] Lecture 15, Lemma 15.32.

Consequence of Theorem 48 is that every lattice L corresponds to an elliptic
curve over C.

Definition 38. A torus is a quotient group C/L where L is a lattice.

Remark. More specifically, the quotient group C/L is the quotient group of the
additive group C and its additive subgroup L.

The Weierstrass ℘-function (and its derivative as well) is what’s called an
elliptic function. Simply stated it means that it is a complex function differen-
tiable almost1 everywhere and it is periodic on L i.e., ∀z ∈ C,∀α ∈ L : ℘(z) =
℘(z + α).

Due to the periodicity, we can look at ℘ as a function of a torus. Using
the substitutions described above, we can formulate the correspondence between
lattices and elliptic curves as follows.

Theorem 49. Let L be a lattice and (EL,O) be an elliptic curve over C given
by: y2 = 4x3 − g2(L)x− g3(L). Define a map Φ : C/L → EL(C) as follows:

Φ(z) =

⎧⎨⎩(℘(z), ℘′(z)) z /∈ L

O z ∈ L.

The map Φ is a group isomorphism.

Proof. [Sut19] Lecture 16, Theorem 16.1.

Now we know that for every lattice there exists an elliptic curve over C and
that elliptic curve group is isomorphic to the corresponding torus. Let L be a
lattice. From now on the corresponding elliptic curve to a lattice L is going to
be denoted as EL and it is given by the equation: y2 = 4x3 − g2(L)x− g3(L).

1This "almost" has a clear definition. The term is "a meromorphic function".
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Definition 39. Let L be a lattice. Define the j-invariant of L as

j(L) = 1728g2(L)3

∆(L) .

Remark. It holds that j(L) = j(EL) i.e., the j-invariant of a lattice is equal to
the j-invariant of the corresponding elliptic curve EL.

It would be nice to know if there exists a lattice for every elliptic curve over
C. This is also true.

Theorem 50. Let L,L′ be lattices and let EL, EL′ be the corresponding elliptic
curves. L,L′ are homothetic iff EL, E

′
L are C-isomorphic.

Proof. [Sut19] Lecture 16, Theorem 16.5.

Theorem 51. Let E be an elliptic curve over C. There exists L s.t. E is the
corresponding curve to the lattice L.

Proof. [Sut19] Lecture 16, Corollary 16.12.

This theorem clears up our doubts about the correspondence between elliptic
curves over C and lattices. We can now look at elliptic curves over C as lattices.

We would like to translate isogenies into this framework. The following the-
orem characterizes morphisms between tori. We will again not give a precise
definition of what a morphism between tori is but simply put: it is a restriction
of a complex differentiable function upon tori that is also a group homomorphism.

For example choose α ∈ C consider the map fα : C → C s.t. fα(z) = αz. Add
two lattices L,L′ and denote the restriction of fα as ϕα i.e., it is the map:

C/L → C/L′

z + L ↦→ αz + L′.

For ϕα to be a group homomorphism we need ϕα(0L) = 0L′ i.e., αL ⊆ L′.
Thus, if α,L, L′ satisfy this condition, then ϕα is a morphism of tori. The following
theorem characterizes all possible morphism and states all of them have this form.

Denote Hom(C/L,C/L′) = {morphisms C/L → C/L′}.

Theorem 52. Let L,L′ be lattices. Define a map τ as

{α ∈ C : αL ⊆ L′} → Hom(C/L,C/L′)
α ↦→ ϕα

where ϕα is defined as above (ϕα(z + L) = αz + L′). Then τ is an isomorphism
of additive groups and if L = L′, then τ is an isomorphism of commutative rings.

Proof. [Sut19] Lecture 17, Corollary 17.2.

Theorem 53. Let L,L′ be lattices, let EL, EL′ be the corresponding elliptic curves
over C and let α ∈ C. Then the following are equivalent:

(a) αL ⊆ L′.
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(b) There exists a unique λα ∈ HomC(EL, EL′) (λα is an isogeny over C) s.t.
this diagram commutes:

C/L C/L′

EL(C) EL′(C)

ϕα

Φ Φ′

λα

where ϕα denotes the morphism described above Theorem 52 and Φ,Φ′ de-
note the isomorphisms described in Theorem 49.

In addition, for every λ ∈ HomC(EL, EL′) there exists a unique αλ ∈ C s.t.
αλL ⊆ L′. The maps α ↦→ λα and λ ↦→ αλ are inverse group isomorphisms
between {α ∈ C : αL ⊆ L′} and HomC(EL, EL′).

Proof. [Sut19] Lecture 17, Theorem 17.4.

Theorem 53 states that every isogeny between elliptic curves over C corre-
sponds to a morphism between tori which correspond to certain elements of C.
This can remind us of the previous correspondence between elements of EndK(E)
and elements of the tensor product End0

K(E) = EndK(E) ⊗ Q. To investigate
this further we need to focus more on the special case when L = L′.

Theorem 54. Let L be a lattice. The following statements hold:

(a) The maps α ↦→ λα and λ ↦→ αλ are inverse ring isomorphisms between
{α ∈ C : αL ⊆ L} and HomC(EL, EL) = EndC(EL).

(b) The map ϕ ↦→ ϕ̂ (the dual isogeny map) corresponds to the complex conju-
gation α ↦→ α.

(c) Tr(α) = α+α = Tr(λα) (the trace on left is in C and the trace on the right
is in EndC(EL)).

(d) N(α) = αα = N(λα) (the norm on left is in C and the norm on the right is
in EndC(EL) which corresponds to the isogeny degree).

Proof. [Sut19] Lecture 17, Corollary 17.5.

Remark. The term complex multiplication comes from this. The endomorphisms
of an elliptic curve which are not in Z correspond to certain complex numbers
(specifically C \ R).

Theorem 55. Let E be an elliptic curve over C. Then EndC(E) is isomorphic
to either Z or an order in an imaginary quadratic field.

Alternatively, End0
C(E) is isomorphic to Q or Q(

√
D) for some D ∈ Z, D < 0.

Proof. [Sut19] Lecture 17, Corollary 17.7.

Remark. Notice the difference between C and a field of positive characteristic. In
the positive characteristic we allow one more option, the quaternion algebra.
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From now on we assume that the elliptic curve we work with in this section
has complex multiplication. Every imaginary quadratic field can be embedded
into C. We can thus embed End0

C(E) into C naturally and as stated above, we
have an isomorphism between EndC(E) and an order in an imaginary quadratic
field. We also assume that we have used an embedding for which EndC(E) is
equal to the order from Theorem 55.

An order is by definition a lattice (and a ring). We will now study the re-
lationship between lattices, which define elliptic curves, and the elliptic curves’
endomorphism rings, which are also lattices.

Consider an order O and define L = O. What is EndC(EL)? We know that
EndC(EL) = O′ = {α ∈ C : αL ⊆ L} = {α ∈ C : αO ⊆ O}. By the definition of
an order, we get that α ∈ O′ =⇒ α ∈ O i.e., O′ ⊆ O.

On the other hand, take α ∈ O. Since O is a ring, clearly αO ⊆ O i.e., also
O ⊆ O′. In the end O = O′.

If L,L′ are homothetic, then EndC(EL) = EndC(EL′). This is clear from the
definition.

Now another question arises: Is there any non-homothetic lattice L′ to L = O
for which EndC(EL′) = O? W.l.o.g. we can assume every lattice to be of the form
L = [1, α], since we only care about non-homothetic lattices. This is because any
lattice L = [α, β] = αZ + βZ is homothetic to a lattice L′ = [1, β

α
] = Z + β

α
Z =

1
α
(αZ + βZ) = 1

α
L.

Note that any order O we can express as a lattice O = [1, ξ] where ξ is an
algebraic integer. For a lattice (as mentioned above) we assume L = [1, α] and
α ∈ C \ R.

Claim 56. Let L be a lattice and O be an order in an imaginary quadratic field
and let EL be the corresponding elliptic curve to L. If EndC(EL) = O, then L is
homothetic to an O-ideal.

Proof. Let L = [1, α] and O = [1, ξ] as above.
{β ∈ C : βL ⊆ L} = EndC(EL) = O implies that ξ ∈ O is an element of

L. Thus, there exist m,n ∈ Z, n ̸= 0 s.t. ξ = m + nα. Consider the lattice
nL = [n, nα]. We know nα = ξ − m thus nL = [n, ξ − m] but also clearly
[n, ξ −m] ⊆ [1, ξ] = O. In other words, nL ⊆ O and L is homothetic to nL.

Now we just need to show that nL is an O-ideal. nL is a lattice and it is a
subset of O i.e., it is an additive subgroup of O. We know O = {β ∈ C : βL ⊆ L}
but this set is the same for homothetic lattices so we get

O = {β ∈ C : βL ⊆ L} = {β ∈ C : βnL ⊆ nL}.

In other words, nL is closed under multiplication by elements of O therefore an
O-ideal.

Claim 57. Let O be an order in an imaginary quadratic field K and let L be an
O-ideal. Then L is lattice, the set

O(L) = {β ∈ C : βL ⊆ L}

is an order in K and O ⊆ O(L) = EndC(EL).
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Proof. First we show that O(L) = {β ∈ C : βL ⊆ L}. Note that O(L) means
the set from Definition 11 and we need to prove the equality. One inclusion is
clear. By assumption L ⊆ O ⊆ K. Take β ∈ C : βL ⊆ L ⊆ K, take δ ∈ L, then
by assumption βδ ∈ L ⊆ K =⇒ β ∈ K since δ ∈ K.

Next, we show that L is a lattice i.e., an additive subgroup of C of rank 2.
Take δ ∈ L, since L is an O-ideal, then δO ⊆ L ⊆ O. δO and O are both additive
subgroups of C of rank 2 therefore L is as well i.e., L is a lattice.

Because L is a lattice, then O(L) = {β ∈ C : βL ⊆ L} = EndC(EL) is an
order in an imaginary quadratic field K ′ ⊆ C. O(L) is a subring of K and O(L)
is an order in K ′ therefore it must be also an order in K.

Take β ∈ O, L is an O-ideal therefore βL ⊆ L i.e., β ∈ O(L) =⇒ O ⊆
O(L).

Definition 40. Let O be an order in an imaginary quadratic field. Let I, J be
O-ideals. We call I, J equivalent O-ideals if they are homothetic as lattices. This
definition make sense since in Claim 57 we have proven that every O-ideal is a
lattice.

Equivalently we can define I, J to be equivalent O-ideals if there exist α, β ∈ O
s.t. αI = βJ ⇐⇒ (α)I = (β)J .

Same as with O-ideals, we define the set O(I) for a fractional O-ideal as

O(I) = {α ∈ K : αI ⊆ I}.

Definition 41. Let I be a fractional O-ideal. We call I proper if O(I) = I.

Theorem 58. Let O be an order in an imaginary quadratic field K, let L = [α, β]
be an O-ideal and let I = 1

b
L be fractional O-ideal where b ∈ Z, b > 0. Then:

(a) I is proper iff L is proper.

(b) I is invertible iff L is invertible.

(c) L is invertible iff L is proper.

(d) If L is invertible, then LL = (N(L)) (a principal O-ideal generated by an
integer) where L = [α, β]. Also, the inverse of L is L−1 = 1

N(L)L.

Proof. [Sut19] Lemma 18.9 and Theorem 18.10.

Corollary. Let O be an order in an imaginary quadratic field K and let I, J be
invertible fractional O-ideals. Then N(IJ) = N(I)N(J).

3.2 Definition of the action
Definition 42. Let O be an order in an imaginary quadratic field. Denote the set
of invertible (proper) fractional O-ideals as I(O) and denote the set of principal
invertible fractional O-ideals as P (O). Clearly P (O) ⊆ I(O).

Define the ideal class group of O as the quotient group cl(O) = I(O)/P (O).

Remark. We can also look at the ideal class group of O as the set of equivalence
classes of proper O-ideals where the equivalence is defined as an equivalence of
O-ideals.
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Theorem 59. Let O be an order in an imaginary quadratic field. Every class
[I] ∈ cl(O) contains infinitely many ideals of prime norm.

Proof. [Cox13] Theorem 7.7 (iii) and Theorem 9.12

Theorem 60. Let O be an order in an imaginary quadratic field. cl(O) is a
finite abelian group.

Proof. [Cox13] Theorem 3.9 and Theorem 7.7 (ii).

Definition 43. Let K be an imaginary quadratic field and OK its maximal order.
Denote the cardinality of cl(OK) as h(D) where D = disc(OK).

Definition 44. Let O be an order in an imaginary quadratic field and let K be
a field. Denote by EllO(K) the set

EllO(K) = {j(E) ∈ K : EndK(E) = O}

If we fix an order O in an imaginary quadratic field, we can now say there is
a bijection between the sets cl(O) and {E/C : EndC(E) = O}. We can also state
that {E/C : EndC(E) = O} is in bijection with the set {L a lattice : O(L) = O}.

Let O be an order in an imaginary quadratic field. We know that every O-
ideal is a lattice. Let I be an O-ideal and denote by EI the elliptic curve over C
which corresponds to I as a lattice. Every elliptic curve E s.t. its endomorphism
ring is O corresponds to a curve EL where L is a proper (invertible) O-ideal. Its
existence is guaranteed by the discussion at the start of this chapter. Also as
stated above, we can look at elements of cl(O) as equivalence classes proper of
O-ideals.

Now we can finally define the ideal class group action.

Theorem 61. Let O be order in an imaginary quadratic field K. The ideal class
group cl(O) acts freely and transitively on the set EllO(C) via the action

cl(O) × EllO(C) → EllO(C)
([I], j(EJ)) ↦→ j(EI−1J)

Proof. First, we will prove it is a group action. We need to prove that for any
non-zero principal invertible fractional O-ideal P it holds that j(EJ) = j(EP −1J)
where J is a non-zero invertible O-ideal. This is easy because for P we have
P = (α), α ∈ K and clearly P−1 =

(︂
1
α

)︂
.

Therefore, if we compare invertible fractional O-ideals J and
(︂

1
α

)︂
J as lattices

we can see that they are homothetic which means they define the same elliptic
curves. We can consider invertible fractional O-ideals as lattices since every one
of them can be written as J =

(︂
1
n

)︂
J ′, n ∈ Z, n > 0, J ′ an O-ideal. Thus, this

does not change homothety.
We have proven the identity of the action.
Now we will prove compatibility i.e., for any I, J, L proper O-ideals (we look

at cl(O) as equivalence classes of proper O-ideals) we have

[I]([J ]j(EL)) = [IJ ]j(EL) (using group action notation).
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Therefore

[I]([J ]j(EL)) = [I](j(EJ−1L)) = j(EI−1J−1L) =
j(E(JI)−1L) = [JI]j(EL) = [IJ ]j(EL).

We have only used properties of fractional ideals and commutativity. We have
completed the proof for the group action part.

Now we will show that it is free i.e., if there exists [I] ∈ cl(O) s.t. [I]j(EJ) =
j(EJ) then [I] is the identity element, in our case I is principal. If [I]j(EJ) =
j(EJ) then I−1J and J must be homothetic since they define the same elliptic
curve. By definition there exists a non-zero α ∈ K s.t. I−1J = αJ =⇒ I−1 =
(α) i.e., I−1 is principal which is equivalent to I being principal.

Next up is transitivity. This one is clear since we have shown before there is
bijection between the finite sets cl(O) and EllO(C), the action must be transitive
because if we take j(EJ) ∈ EllO(C) and apply the action for all elements of cl(O)
the images must be distinct because we have proven that the action is free. In
other words the orbit of j(EJ) is EllO(C).

Definition 45. Let X be a set and G be an abelian group. We say that
X is a principal homogenous space for a group G if G acts freely and transitively
on X. Alternatively, we can say that X is a G-torsor.

Remark. For a G-torsor X we have that for all x, y ∈ X there exists a unique
g ∈ G s.t. gx = y.
Corollary. Let O be order in an imaginary quadratic field. EllO(C) is a cl(O)-
torsor.

Let’s now investigate the relationship between the cl(O)-action on EllO(C)
and isogenies between elliptic curves over C s.t. their endomorphism ring is O
for some fixed O order. Recall Theorem 53, which basically characterizes how
every isogeny between two elliptic curves over C looks like in terms of maps
between tori.

Consider elliptic curves EL1 , EL2 over C where L1, L2 are their corresponding
lattices and take λ ∈ HomC(EL1 , EL2). By Theorem 53 there exists a unique
α ∈ C s.t. αL1 ⊆ L2 and the following diagram commutes

C/L1 C/L2

EL1(C) EL2(C)

ϕα

Φ1 Φ2

λ

where ϕα is the induced morphism by α. For quite a while we have been looking
at lattices and elliptic curves in terms of homothety and isomorphism classes, we
will apply this approach to this diagram as well. We can extend the diagram as
follows
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C/L1 C/αL1 C/L2

EL1(C) EαL1(C) EL2(C)

ϕ′
α

Φ1

ϕ1

Φ′
1 Φ2

ψ λ′

where ϕα = ϕ1 ◦ ϕ′
α, λ = λ′ ◦ ψ and Φ′

1 is the corresponding isomorphism. In
more detail:

ϕ′
α : C/L1 → C/αL1

β + L1 ↦→ αβ + αL1

ϕ1 : C/αL1 → C/L2
β + αL1 ↦→ β + L2

and ψ is the isomorphism between elliptic curves EL1 and EαL1 which we know
exists since the corresponding lattices are homothetic. Then λ′ = λ ◦ ψ−1 i.e.,
λ, λ′ are isomorphic isogenies. If we now set L′ = αL1 we get a diagram

C/L′ C/L2

EL′(C) EL2(C)

ϕ1

Φ′
1 Φ2

λ′

In other words, the isogeny λ′ is induced by the inclusion L′ ⊆ L2. This
means that looking at lattices up to homothety, elliptic curves up to isomorphism
and isogenies up to isomorphism, every element of HomC(EL1 , EL2) arises from
an inclusion of lattices L′ ⊆ L2, since up to isomorphism HomC(EL1 , EL2) =
HomC(EL′ , EL2).

Since isomorphism between elliptic curves is an isogeny of degree 1, it must
be that deg(λ) = deg(λ′) and since we are in C, then λ is clearly separable.
Therefore we have deg(λ) = |Ker(λ)| = |Ker(λ′)|. Looking at the diagram above,
we can easily see the relationship between the kernel and the index of lattices (as
groups).

Since L′ ⊆ L2 and the definition of Φ2, we see that β ∈ C : Φ2(0) = 0 ⇐⇒
β ∈ L2. By the inclusion then automatically we see that β ∈ L′ =⇒ Φ2(β+L2) =
Φ2(0) = 0. By the commutativity of the diagram we see that the points of C1/L

′,
which map to 0 (more precisely the point ∞) in EL2(C), are precisely the points
of L2. All of the points of L′ are reduced by Φ′

1 to 0 in EL′(C) and since λ′ is an
isogeny, clearly ∀β ∈ L′ : λ′(Φ′(β)) = λ′(0) = 0. Because L′ is a normal subgroup
of L2, we can look at the other points of L2 as elements of the quotient L2/L

′,
which has the size |L2/L

′| = |L2 : L′|.
We have shown that deg(λ) = |L2/L

′| = |L2 : L′|. For example if we take an
elliptic curve EL and its endomorphism ring, the inclusion nL ⊆ L (|L : nL| = n)
corresponds to the isogeny [n] (multiplication by n endomorphism).

Now we combine this knowledge with our previous discussion about the cl(O)
action. Let’s consider O be an order in an imaginary quadratic field and EL to
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be an elliptic curve over C s.t. EndC(E) = O. We know L is homothetic to I
where I is a proper (invertible) O-ideal. So up to homothety we can take EL to
be EI . Take a proper O-ideal J . Since IJ ⊆ I and J invertible =⇒ I ⊆ J−1I.
This is also an inclusion of lattices (up to homothety) thus it induces an isogeny
λJ : EI → EJ−1I . This exactly corresponds to how our cl(O)-action by J to EI

behaves.

Theorem 62. Let O be an order in an imaginary quadratic field. Let E1, E2 be
elliptic curves over C s.t. EndC(E1) = O = EndC(E2). Then there exists an
isogeny E1 → E2.

For every isogeny E1 → E2 there exists a proper O-ideal J s.t. E1 ∼= EI and
E2 ∼= [J ]EI where I is a proper O-ideal. Isomorphic isogenies correspond to the
same element of cl(O).

Proof. As usual let L1 be the corresponding lattice to E1 and same for L2. Using
the endomorphism ring assumption, we know that L1 is homothetic to a proper
O-ideal I and L2 is homothetic to a proper O-ideal J . Denote these curves
EI

∼= E1 and EJ
∼= E2.

Define another elliptic curve isomorphic to EI as E(N(J))I i.e., the curve cor-
responding to the proper O-ideal (N(J))I. By Theorem 58 (N(J))I = JJI ⇐⇒
J | N(J))I ⇐⇒ N(J))I ⊆ J . We can apply the same argument as in the
paragraph above. We have the inclusion (N(J))I = (JJ)I ⊆ J .

Having an inclusion means that there is an isogeny λ : E(N(J))I → EJ . If we
set M = (N(J))IJ−1, which is an invertible O-ideal, and look at the action of M
upon E(N(J))I we get

[M ]E(N(J))I = EM−1(N(J))I = E((N(J))IJ−1)−1(N(J))I =
EJI−1(N(J))−1(N(J))I = EJ .

We have an isogeny between two elliptic curves which is induced by an inclusion
of lattices and also, we have found an element of cl(O) which acts in the same
way. We have constructed an isogeny between E1 and E2 (λ together with a few
isomorphisms, which is still an isogeny).

Every isogeny arises from an inclusion and we can always craft a proper ideal
in the same way as we did s.t. the isogeny between the curves corresponds to an
action by that ideal.

Definition 46. Let E be an elliptic curve over C s.t. EndC(E) = O where
O is an order in an imaginary quadratic field K and let I be an O-ideal. The
I-torsion subgroup of E(C) is

E[I] = {P ∈ E(C) : ∀α ∈ I α(P ) = 0}

Theorem 63. Let E be an elliptic curve over C s.t. EndC(E) = O where O is
an order in an imaginary quadratic field K and let I be a proper O-ideal. Let λI

be the corresponding isogeny E → [I]E from Theorem 62. Then deg(λI) = N(I)
and Ker(λI) = E[I].

Proof. [Sut19] Lecture 18, Theorem 18.14.

Which all can be summed up to:
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Theorem 64. Let O be an order in an imaginary quadratic field and let I be a
proper O-ideal. Let E be an elliptic curve s.t. EndC(E) = O then there exists an
isogeny λI : E → [I]E s.t. deg(λI) = N(I).

Proof. This is basically a rephrased Theorem 63.

Recall that EllO(C) is a cl(O)-torsor, this means that between any two el-
liptic curves with O as an endomorphism ring there exists an element of cl(O)
which means there exists an isogeny of some degree (depends on the norm of the
element).
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4. The road from C to Fq
In the last chapter, we have been exclusively working with elliptic curves over C
but in practice we want to work with elliptic curves over finite fields.

In this chapter we show that we can transfer the most important results from
C to a finite field.

Definition 47. Let O be an order in an imaginary quadratic field s.t. disc(O) =
D. The Hilbert class polynomial of O is a polynomial of the form:

HO(x) = HD(x) =
∏︂

j(E)∈EllO(C)
(x− j(E)).

Theorem 65. Let O be an order in an imaginary quadratic field. HO(x) ∈ Z[x].

Proof. [Sut19] Lecture 21, Theorem 21.12.

Corollary. Let O be an order in an imaginary quadratic field. Let E be an elliptic
curve over C s.t. EndC(E) = O. Then j(E) is an algebraic integer.

Let O be an order in an imaginary quadratic field K = Q(
√
D). We will for a

while work with the splitting field of HO(x) over K which we will call L. L/K is
a finite Galois extension because L is a splitting field of a separable polynomial
(by definition HO(x) is separable).

Then ∀j(E) ∈ EllO(C) =⇒ j(E) ∈ L. Also, since j(E) is an algebraic
integer, then j(E) ∈ OL.

Using Theorem 2 we can construct an elliptic curve given by a Weierstrass
equation where the coefficients lie in OL i.e., the elliptic curve is defined over L.

OK ,OL (clearly OK ⊆ OL because K ≤ L) are Dedekind domains which
means that every proper ideal has a unique factorization into prime ideals and
every prime ideal is maximal.

Let P ⊆ OL be a prime ideal. The quotient ring OL/P is field since P is a
maximal ideal and it is a finite field since N(P ) = |OL : P | ∈ N. All finite fields
have cardinality of the form pn for a prime p and n ∈ N, this shows that the norm
of a prime ideal is also of the form pn.

Take a prime ideal P in OK and consider the ideal POL ⊆ OL. Since OL is
a Dedekind domain we have a unique decomposition of POL into prime ideals:
POL = Q1 . . . Qn where n ∈ N,∀1 ≤ i ≤ n : Qi is a prime ideal in OL.
Remark. For a prime P in OK denote as Q|P the set of Qis where POL =
Q1 . . . Qn is the prime decomposition.

Definition 48. Let L/K be a finite Galois extension where K is an imagi-
nary quadratic field and let P be a prime ideal of OK. If the prime ideals
of OL of the prime decomposition of the ideal POL are distinct, we say that
P is unramified in L.

Remark. Let L/K be a finite Galois extension where K is an imaginary quadratic
field. There are only finitely many prime ideals of OK that are not unramified in
L. For proof see [Mar18] Chapter 3, Theorem 24 and Corollary 3.
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Definition 49. Let L/K be a finite Galois extension where K is an imaginary
quadratic field. Let p ∈ Z ⊂ K be a prime. We say that

(a) p is unramified in L, if Q|(p) are distinct prime ideals.

(b) p splits completely in L, if Q|(p) are distinct prime ideals of norm p.

If we take σ ∈ Gal(L/K) and apply it to our prime decomposition we get on
the left side

σ(POL) = σ(P )σ(OL) = POL

because σ fixes elements of K and also must map algebraic integers of L to
algebraic integers of L (it is an automorphism of L). On the left side we get

σ(Q1 . . . Qn) = σ(Q1) . . . σ(Qn) = Qσ′(1) . . . Qσ′(n).

In other words, σ maps prime ideals upon prime ideals and, since we have a
unique factorization, the worst it can do is permute them.

From now on we consider only σ s.t. σ′ is an identity (the permutation is
trivial). Fix a prime ideal P in OK and fix an ideal Q ∈ Q|P . Since σ(Q) = Q
we have an induced automorphism σ of the quotient ring OL/Q that is defined as
σ(ϕQ(x)) = ϕQ(σ(x)) where ϕQ is the canonical map OL → OL/Q for all x ∈ OL.

As mentioned before, OL/Q is a finite field. If we take a look at the image of
OK ⊆ OL by ϕQ we have

ϕQ(OK) = OK/(OK ∩Q) = OK/P.

This comes from the definiton of Q, since Q contains the ideal P . Because
OK/P ⊆ OL/Q are both finite fields we also get that OK/P is a subfield of
OL/Q. Denote these finite fields as FP and FQ. They must have the same
characteristic p which comes from the norm of the ideals.

Let’s get back to elliptic curves. Consider an elliptic curve E over C s.t.
EndC(E) = O where O is an order in an imaginary quadratic field K. Let L
be the splitting field HO(x). At the start of the chapter, we noted that j(E)
is an algebraic integer and by definition of L it means that j(E) ∈ OL. Using
Theorem 2 we know that E can be given by a Weierstrass equation in the form
y2 = x3 + Ax+B where A,B ∈ OL as well.

Assuming ∆(E) /∈ Q (∆(E) is also an element of OL), there is nothing pre-
venting us from defining a new elliptic curve E over the finite field FQ given by
the polynomial y2 = x3 + ϕQ(A)x+ ϕQ(B).

Definition 50. Let E be an elliptic curve over C s.t. EndC(E) = O where
O is an order in an imaginary quadratic field K. Let L be the splitting field
HO(x) and Q a prime ideal of OL. We that that E has good reduction modulo Q
if ∆(E) /∈ Q.

Remark. There are only finitely many prime ideals Q of OL s.t. the curve from
previous definition does not have good reduction modulo Q. This is a consequence
of (∆(E)) being divisible only by finitely many prime ideals in OL.

The following theorem tells us that in our use case we do not have to consider
curves over C but only over L.
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Definition 51. Let L,K be field extensions over a field k. We say L.K is a
compositum of L,K where L.K = k(K ∪ L). In other words, the compositum of
L,K is the smallest field containing L and K.

Theorem 66. Let O be an order in an imaginary quadratic field K and let E be
an elliptic curve over L ⊆ C s.t. EndL(E) = O. Then EndL(E) = EndL.K(E).

Proof. [Sil94] Theorem 2.2 (b).

Corollary. Let O be an order in an imaginary quadratic field K and let E be
an elliptic curve over L where L is the splitting field of HO(x) over K. Then
EndL(E) = EndL(E).
Corollary. Let O be an order in an imaginary quadratic field K and let E be
an elliptic curve over L where L is the splitting field of HO(x) over K. Then
EllO(C) = EllO(L).

Proof. The inclusion EllO(L) ⊆ EllO(C) is clear since L ⊆ C and EndL(E) ⊆
EndC(E).

The other inclusion comes from Theorem 65 and Theorem 66. Let j(E) ∈
EllO(C) i.e., E is an elliptic curve defined over C and EndC(E) = O. By Theorem
65 this curve is actually defined over L thus it must be EndC(E) = EndL(E). By
Theorem 66 we have EndL(E) = EndL(E).

Theorem 67. Let E,E ′ be elliptic curves defined over K ⊆ C. Then there exists
a finite extension K ′/K s.t. HomK(E,E ′) = HomK′(E,E ′).

Proof. [Sil94] Theorem 2.2 (c).

Definition 52. Let p be a prime and D be an integer. If p = 2, then define the
Kronecker symbol denoted as

(︂
D
p

)︂
as

(︃
D

2

)︃
=

⎧⎪⎪⎨⎪⎪⎩
0 2 | D
1 D ≡ ±1 mod 8
−1 D ≡ ±3 mod 8.

For p > 2 define it as

(︄
D

p

)︄
=

⎧⎪⎪⎨⎪⎪⎩
0 D ≡ 0 mod p

1 D is a quadratic residue modulo p.
−1 D is not a quadratic residue modulo p.

Remark. For p > 2 we can define the Kronecker symbol as(︄
D

p

)︄
= |{x ∈ Fp : x2 = (D mod p)}| − 1.

Remark. The Kronecker symbol is the Legendre symbol for p > 2. The only
difference is that Kronecker is defined also for p = 2.

Definition 53. Let K = Q(
√
D) be an imaginary quadratic field and let p ∈ Z

be a prime. We say that
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(a) p splits in K if (p)OK factors into 2 distinct prime ideals.

(b) p ramifies in K if (p)OK factors into a square of a prime ideal.

(c) p is inert in K if (p)OK is a prime ideal.

Theorem 68. Let O be an order with discriminant D in an imaginary quadratic
field K and let p be a prime. If p | |OK : O|, then there are no proper O-ideals
of norm p. Otherwise the number of such ideals is 1 −

(︂
D
p

)︂
∈ {0, 1, 2}. More

specifically:

(a) 1 −
(︂

D
p

)︂
= 0 ⇐⇒ p is inert in K.

(b) 1 −
(︂

D
p

)︂
= 1 ⇐⇒ p is ramified in K.

(c) 1 −
(︂

D
p

)︂
= 2 ⇐⇒ p splits in K.

Corollary. Let O be an order with discriminant D in an imaginary quadratic field
K, let p be a prime and let L be the splitting field of HD(x) over K. If p ∤ D,
then p is unramified in L.

Proof. [Sut19] Lecture 22, the discussion before Corollary 22.8.

Lemma 69. Let K = Q(
√
D) be an imaginary quadratic field, let q be a prime

and O = [1, α], α /∈ Z s.t. |OK : O| = f . Every O-ideal of norm q is of the form
Q = [q, α− δ] where δ is a root of minQ(α) mod q. The number of such ideals is
1 −

(︂
D
q

)︂
∈ {0, 1, 2} and the factorization of the O ideal (q) into prime ideals is

(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
QQ if

(︂
D
q

)︂
= 1

Q2 if
(︂

D
q

)︂
= 0

(q) if
(︂

D
q

)︂
= −1

where in the first case Q ̸= Q.

Proof. This Lemma is a generalized version of [Sut19], Lecture 22, Lemma 22.6.
The minimal polynomial of α over Q is f(x) = x2−(α+α)x+αα ∈ Z[x]. LetQ

be a O-ideal of norm q. By Lagrange theorem we have N(Q)·(1+Q) = 0+Q (in the
quotient group O/Q) which is equivalent to saying N(Q) = q ∈ Q =⇒ (q) ⊆ Q.

Every integer in Q must be a multiple of q because otherwise we would have
Q = O. That would be a contradiction with Q being of norm q.

Thus Q∩Z = (q). From that we can assume that Q is of the form [q, aα− δ]
for some a, δ ∈ Z but since [O : Q] = q we get a = 1.

By properties of Q being an O-ideal we get that

(α− δ)(α− δ) = αα− (α + α)δ + δ2 = f(δ) ∈ Q.

f(δ) is an integer that is an element of Q which implies δ ∈ (q). This also shows
that δ is a root of f(x) mod q.

On the other hand, if δ is a root of f(x) mod q, then [q, α− δ] is a O-ideal of
norm q. If f(x) mod q has distinct roots δ, λ modulo q, then [q, α− δ], [q, α− λ]
define different ideals.
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We have shown that the number of different ideals of O of norm q corresponds
to the number of distinct roots of f(x) mod q. The discriminant of f(x) is
(α + α)2 − 4αα = (α− α)2 = disc(O) = f 2D.

Thus, the number of distinct roots of f(x) mod q corresponds to the value
1 −

(︂
D
q

)︂
if q > 2. For q = 2 this can be shown similarly but, in our applications,

we will work with q > 2 so we omit the proof.
Theorem 70. Let O be an order with discriminant D in an imaginary quadratic
field K, let L be the splitting field of HD(x) over K and let p ∈ Z, p > 2 be a
prime s.t. p ∤ D. Then the following are equivalent:

(a) There exists a principal O-ideal of norm p.

(b)
(︂

D
p

)︂
= 1 and HD(x) splits into linear factors in Fp[x].

(c) p splits completely in L.

(d) There exists t, v ∈ Z s.t. t ̸≡ 0 mod p and 4p = t2 − v2D.
Proof. [Sut19] Lecture 22, Theorem 22.5.

Theorem 70 gives us characterization when p splits completely in L. Assume
we have p ∤ D where D is the discriminant of some order O in an imaginary
quadratic field K and assume there exist such t and v. We know that there exists
a prime ideal Q in OL and N(Q) = p. This means that OL/Q ∼= Fp. We can
reduce every root of HD(x) to an element of Fp by our canonical map.

Choose an elliptic curve E s.t. j(E) is one of the roots of HD(x). By definition
EndL(E) = O (since EllO(L) = EllO(C)). We also get a reduction modulo Q i.e.,
an elliptic curve E over Fp.

A non-zero element ψ ∈ EndL(E) can be always expressed as a rational func-
tion with coefficients in OL due to L being the fraction field of OL. We can reduce
these coefficients by our map OL → Fp. Denote this reduced endomorphism by
ψ. It is actually an endomorphism of E because if we consider E in the projec-
tive sense and look at the rational points ∀P ∈ E(L) ⇐⇒ F (P ) = 0 where
F ∈ OL[X, Y, Z]. The curve E/Fp is defined by F ∈ Fp[X, Y, Z] where F is the
reduction of F . Then ∀P ∈ E we have F (ψ(P )) = 0 since ψ is an endomorphism.
This equality still holds if we apply the reduction map. Only issue could be with
points which have coordinates that are all reduced upon (0 : 0 : 0) i.e., all divisi-
ble by p. In that case we can always consider another point representation where
all points are not divisible by p.

We know that ∀P ∈ E : ψ2(P ) ⊖ [Tr(ψ)]ψ(P ) = ⊖[deg(ψ)](P ). Applying the
reduction map we get ψ2(P ) ⊖ [Tr(ψ)]ψ(P ) = ⊖[deg(ψ)](P ). Note that the maps
[n] still present the n-point addition on elliptic curves. In the first one we have
addition on E and in the second one we have addition on E.

Therefore, ψ is a non-zero isogeny (the map [deg(ψ)] has only finitely many
points in its kernel) and it must be that Tr(ψ) = Tr(ψ) and deg(ψ) = deg(ψ).

We have now shown that the reduction map of endomorphisms is an injective
(because non-zero endomorphisms map to non-zero endomorphisms) homomor-
phism between rings EndL(E) ↪−→ EndFp(E).

Note, this reduction is somewhat loosely stated but helps in understanding
what is going on. For details refer to [Lan12] or [Sil94].

We can sum this up in a theorem.
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Theorem 71. Let O be an order with discriminant D in an imaginary quadratic
field K, let L be the splitting field of HD(x) over K and let p ∈ Z be an odd prime
s.t. p ∤ D and 4p = t2 − v2D for some t, v ∈ Z, t ̸≡ 0 mod p. If E is an elliptic
curve over L s.t. EndL(E) = O, then E has good reduction E modulo Q where
Q is a prime ideal of OL of norm p. The reduction E is also an ordinary curve
and the Frobenius endomorphism ϕ of E/Fp satisfies Tr(ϕ) = ±t ̸≡ 0 mod p.

Proof. The discussion before together with [Sut19] Lecture 22, Corollary 22.9.

Using what we have learned we have now a way how to construct an elliptic
curve over Fp with a preset number of rational points. We won’t present it here
but it can be found in literature under the name CM method or see the discussion
in [Sut19] Lecture 22 after Corollary 22.9.

Next up are one of the most important theorems which proves that the injec-
tive homomorphism EndL(E) ↪−→ EndFp(E) is an isomorphism.

Theorem 72. Let E be an elliptic curve over Fq and let ψ ∈ EndFq
(E) be

non-zero. Then there exists an elliptic curve E over a number field L and an
endomorphism ψ ∈ EndL(E) s.t. E has good reduction modulo Q, where Q is a
prime ideal of OL of norm q, E is the reduction of E and the reduction of ψ is
ψ.

Proof. [Lan12] Chapter 13, Theorem 14.

Theorem 72 is called "The Deuring lifting theorem". The Deuring lifting
theorem is the main reason why we can transfer the ideal class group action to
elliptic curves over finite fields.
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5. Isogeny graphs
Now we can finally define an isogeny graph. In this chapter we assume that K is
a field and l is a prime s.t. l ∤ char(K).

Definition 54. The K-rational l-isogeny graph is denoted by Gl(K). Gl(K) =
(V, E) is a directed multigraph where V is the set of different elliptic curves over
K. The edge (E1, E2) is present in E if there exists an l-isogeny E1 → E2 defined
over K. The edge (E1, E2) has multiplicity equal to the number of different l-
isogenies E1 → E2 defined over K. By "different" in the context of elliptic curves
and isogenies we mean up to K-isomorphism.

Remark. One might be eager to set V = K since every j ∈ K is a j-invariant of
an elliptic curve over K by Theorem 2 (c). The only issue with this is that we
would lose some vertices because j-invariant defines a curve up to K-isomorphism
but in our case, we need a finer distinction.
Remark. Considering K s.t. char(K) > 0 then Gl(K) has 2 disjoint subgraphs.
The supersingular one and ordinary one. This is due to Theorem 18.

For every isogeny E1 → E2 defined over K there exists its dual isogeny which
is also defined over K. This means (E1, E2) ∈ E ⇐⇒ (E2, E1) ∈ E . The
multiplicities of both edges are the same if j(E1), j(E2) /∈ {0, 1728}.

In case j(E1) or j(E2) is equal to 0 or 1728 the multiplicities might not match.
This exceptional case is caused by extra automorphisms of curves with these j-
invariants. Every curve has the automorphism [−1] which does not change the
kernel.

If j(E1) = 0, then
√

−3 ∈ K (this is equivalent to saying that the 3rd root of
unity is in K) and if j(E2) /∈ {0, 1728}, then E1 has 2 extra automorphisms that
do not fix the kernel. Therefore, every isogeny E1 → E2 can be composed with
one of these automorphisms and make a different isogeny. The corresponding
dual isogenies have the same kernel i.e., they represent the same isogeny.

If j(E1) = 1728 and the 4th root of unity is in K (i.e.,
√

−1 ∈ K) then we
have one extra automorphism (technically there are 2 extra automorphisms, see
the example below for details) which does not fix the kernel.

In our case we will work with fields where even if j-invariants are of values
0, 1728 the automorphisms are not defined over K so the compositions with them
are not K-rational i.e., they don’t represent an edge and the multiplicities are
the same.
Example 3. Let E : y2 = x3 + x over Fq. Assume we have a finite subgroup
H ≤ E(Fq) that induces an l-isogeny ψH : E → E ′ s.t. j(E ′) /∈ {0, 1728}.

We calculate j(E) = 1728 which means we have 4 distinct automorphisms of
E. Denote by i ∈ Fq the fourth root of unity. The automorphisms correspond to
the values {i, i2, i3, 1} by Theorem 6:

ρ1(x, y) = (i2x, i3y) = (−x,−iy)
ρ2(x, y) = ((i2)2x, (i2)3y) = (x,−y)
ρ3(x, y) = ((i3)2x, (i3)3y) = (−x, iy)
ρ4(x, y) = ((i4)2x, (i4)3y) = (x, y)
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Note that ρ2 = [−1], ρ3 = [−1] ◦ ρ1, ρ4 = [1].
As we noted before, the isogenies [−1], [1] clearly do not change the kernel

because if we compose ψH with them we get ψH ◦ [1] = ψH and ψH ◦ [−1]. If
P ∈ Ker(ψH) : ψH(P ) = O and (ψH ◦[−1])(P ) = ψH(−P ) = −ψH(P ) = −O = O
because ψH is an isogeny and therefore a group homomorphism E → E ′.

The isogeny ϕH ◦ ρ1 has a different kernel but the kernel has the same size
because ρ1 is an automorphism. To be precise, the kernel is ρ−1

1 (H). The isogeny
ϕH ◦ ρ3 has the same kernel because ρ3 = [−1] ◦ ρ1.

Assuming ϕH , ϕH ◦ ρ1 are the only two l-isogenies E → E ′ over Fq, the edge
(E,E ′) in Gl(Fq) has multiplicity 2 but the edge (E ′, E) has only multiplicity
1. This is because the dual isogeny ˆ︃ϕH has the same kernel as the dual isogeny
ˆ︂ϕH ◦ ρ1 = ˆ︂ρ1 ◦ ˆ︃ϕH . Clearly ˆ︂ρ1 = ρ3.

Claim 73.
√

−1,
√

−3 /∈ Fp if and only if p ≡ 11 mod 12.

Proof. We want to know when −1,−3 are not quadratic residues modulo p. From
number theory we know that a is not a quadratic residue modulo p iff

(︂
a
p

)︂
= −1

(using Legendre symbol). It is also well known that
(︂

−1
p

)︂
= −1 ⇐⇒ p ≡ 3

mod 4. Thus, we have one condition on p. We also want
(︂

−3
p

)︂
= −1. Using the

properties of Legendre symbol we get(︄
−3
p

)︄
=
(︄

−1
p

)︄(︄
3
p

)︄
.

If p ≡ 3 mod 4, then we want
(︂

3
p

)︂
= 1. This happens iff p ≡ 1 mod 12 or

p ≡ 11 mod 12. The first case does not satisfy p ≡ 3 mod 4 therefore the only
option is p ≡ 11 mod 12.

Theorem 74. Let E1, E2 be elliptic curves over K and let ψ ∈ Hom(E1, E2)
of degree l. Then End0(E1) ∼= End0(E2). If End0(E1) = K ′ is an imaginary
quadratic field, then End(E1) = O1,End(E2) = O2. Both O1,2 are orders in K ′

and one of the following holds:

(a) O1 = O2.

(b) |O1 : O2| = l.

(c) |O2 : O1| = l.

Proof. [Sut19] Lecture 23, Theorem 23.3.

Using the previous theorem, we can characterize isogenies of degree l between
two ordinary elliptic curves E1, E2.

Definition 55. Under the assumptions of Theorem 74 we say that ψ is

(a) Horizontal if O1 = O2.

(b) Descending if |O1 : O2| = l.

(c) Ascending if |O2 : O1| = l.
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Descending and ascending isogenies are sometimes referred to as vertical isoge-
nies.

Now we present a bit of graph theory which is essential to the understanding
of the security of cryptographic algorithms which use isogeny graphs. Loosely
speaking, we want random walks on these graphs to end up in random vertices.

Definition 56. Let n ∈ N. A random walk of length n on a graph G = (V, E)
is a path v1 → · · · → vn defined by a random process that selects vi uniformly at
random from the set of neighbors of vi−1 for all 2 ≤ i ≤ n.

Recall from graph theory that a degree of a vertex is the number of edges
that this vertex is a part of. Let k ∈ N, a k-regular graph is a graph where every
vertex has a degree of k.

The adjacency matrix AG of a graph G = (V, E) is a n × n matrix where
n = |V | and AG

i,j = 1 if there is an edge (vi, vj) and 0 otherwise. For an undirected
graph this matrix is clearly symmetric which implies there are n real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn.

If G is a k-regular graph, then λ1 = k and λn ≥ −k.

Definition 57. Let G = (V, E) be a k-regular undirected multigraph and let ϵ ∈
R, ϵ > 0. We say G is an ϵ-expander if λ2 ≤ (1 − ϵ)k and λn ≥ −(1 − ϵ)k.

Theorem 75. Let G = (V, E) be a k-regular ϵ-expander and let V ′ ⊆ V s.t.
|V ′| ≥ 1. Then a random walk on G of length at least

log
(︃

2|V |√
|V ′|

)︃
log(1 + ϵ) = log1+ϵ

⎛⎝ 2|V |√︂
|V ′|

⎞⎠
ends in V ′ with probability between |V ′|

2|V | and 3|V ′|
2|V | .

Proof. [JMV09] Lemma 2.1.

Theorem 76. Let O be an order in an imaginary quadratic field s.t. disc(O) =
D, let δ > 0, let q be a prime power and define a set S = {l ∈ Z : l prime s.t. l ≤
(log(|D|))2+δ}. Denote by GS(Fq) the union of graphs {Gl(Fq) : l ∈ S}. Then,
assuming the Generalized Riemann Hypothesis, there exists ϵ > 0 s.t. the subgraph
G of GS(Fq), which consists of vertices in EllFq(O)1, is an ϵ-expander as q → ∞.

Proof. [JMV09] Theorem 3.2.

Remark. The value of ϵ is dependent on the value of δ. For details refer to
[JMV09].

The previous 2 theorems are very technical. To rephrase them more "practi-
cally": they show that if we pick a vertex v and a walk of logarithmic length (in
the number of vertices of G) on G then we end up in a vertex v′ with a probabil-
ity close to uniform. And that the union of Gli(Fq) for specific set of lis has this
property.

1We take the subgraph of GS(Fq) with only horizontal isogenies and curves that have the
endomorphism ring O.
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5.1 Ordinary curves
This section provides theory about the structure of isogeny graphs of ordinary
curves and defines the class group action on EllO(Fq).

Note that we are working with ordinary curves but the theory can be applied
also to special cases. For example, in CSIDH we work with supersingular curves
but only with the Fp-rational subset of the endomorphism ring which is isomorphic
to an order in an imaginary quadratic field. For details refer to the end of the
Section 5.2.

We now present a theorem which tells us how many isogenies of what type
are there between curves with complex multiplication.

Theorem 77. Let E be a curve over Fq and let End(E) = O where O is an order
in an imaginary quadratic field K s.t. disc(O) = D and gcd(D, q) = 1.

(a) If l ∤ |OK : O|, then there exist 1 −
(︂

D
l

)︂
different horizontal isogenies of

degree l and 0 ascending isogenies of degree l.

(b) If l | |OK : O|, then there exist 0 horizontal isogenies of degree l and a 1
ascending isogeny of degree l.

(c) Let O′ be the order of index l in O. If EllO′(Fq) is non-empty, then there
exist l+

(︂
D
l

)︂
different descending isogenies of degree l. Otherwise there are

0 descending isogenies of degree l.

Proof. [Sut19] Lecture 23, Corollary 23.7.

Remark. By different (isogenies) we mean up to Fq-isomorphism because if E is
ordinary, then EndFq(E) = EndFq

(E) = End(E).
The following definition has already been introduced but only in the context

of curves over C. We are going to generalize it.

Definition 58. Let E be an elliptic curve over K s.t. End(E) = O where O
is an order in an imaginary quadratic field and let I be a proper O-ideal. The
I-torsion subgroup of E(K) is

E[I] = {P ∈ E(K) : ∀ψ ∈ I, P ∈ Ker(ψ)}.

Note that as in the previous definition we have ψ ∈ I ⊆ O ∼= End(E) (we usu-
ally write "=" for simplicity) i.e., we automatically assume that ψ is the element of
End(E) which is isomorphic to an element of I. We can show that |E[I]| = N(I)
using the same steps in the proof of Theorem 63 and using reduction of isogenies.

Assume E is an elliptic curve over Fq s.t. End(E) = O where O is an order in
an imaginary quadratic field K. Let D = disc(O) and let I be a proper O-ideal
of norm N(I) = l where l is a prime s.t. gcd(D, q) = 1 = gcd(q, l).

E[I] is a finite subgroup of E(Fq) thus by Theorem 14 there exists a separable
isogeny ψI : E → E/E[I]. By definition Ker(ψI) = E[I] = N(I) = l and because
ψI is separable (because of the prime degree), we have deg(ψI) = |Ker(ψI)| = l.
This isogeny is unique up to Fq-isomorphism by Theorem 14.

We can then use Theorem 72 to lift E and ψI to its corresponding elliptic curve
E and isogeny ψI defined over a number field L ⊆ C. Since gcd(l, q) = 1 we must
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have deg(ψI) = deg(ψI) = l. Also, since E[l] ∼= E[l] (due to the reduction and
gcd(l, q) = 1) we must have Ker(ψI) ∼= Ker(ψI).

The lifted isogeny corresponds to the action of [I] ∈ cl(O) on EllO(L) (the
kernel of the lifted isogeny is E[I]). This also shows that End(E/E[I]) = O. In
other words, ψI is a horizontal isogeny.

Using Theorem 59 we can always find an ideal of prime norm l s.t. gcd(l, q) =
1 = gcd(q,D). We have now basically shown that we can define the action of
cl(O) on EllO(Fq).

Theorem 78. Let O be an order in an imaginary quadratic field s.t. disc(O) = D
and let q be a prime power s.t. gcd(q,D) = 1 = gcd(l, q). If EllO(Fq) is non-
empty, then it is a cl(O)-torsor where the action of the ideal class of a proper
O-ideal of prime norm l is given by a horizontal isogeny of degree l, the inverse
of the action is given by the inverse ideal which corresponds to the dual isogeny.

Proof. Follows from the discussion before.

5.2 Supersingular curves
This section provides theory about the structure of isogeny graphs of super-
singular curves. This chapter mainly contains theorems crucial to the CSIDH
algorithm.

Theorem 79. Let E be an elliptic curve over Fq, let l be a prime s.t. gcd(l, q) =
1. The number of Fq-rational l-isogenies from E can be characterized as follows:

1. If ϕe (as a linear map on E[l] over Fl) has no eigenvalues, then there are
no Fq-rational l-isogenies.

2. If ϕe has one eigenvalue of geometric multiplicity 1, then there is one Fq-
rational l-isogeny.

3. If ϕe has one eigenvalue of geometric multiplicity 2, then there are l + 1
Fq-rational l-isogenies.

4. If ϕe has 2 eigenvalues (of geometric multiplicity 1), then there are 2 Fq-
rational l-isogenies.

Proof. We know E[l] ∼= Zl ×Zl by Theorem 13 i.e., E[l] a vector space over Fl of
dimension 2. ϕe is an isogeny so we can look at it as a linear map on E[l]. As a
linear map on E[l], ϕe can have 0, 1 or 2 eigenvalues.

Every isogeny is uniquely determined by its kernel. If there is a Fq-rational
l-isogeny, then there must be a cyclic (because l is prime) subgroup of E[l]. If
there is a subgroup G = ⟨P ⟩ ≤ E[l] s.t. ϕe(G) = G, then there exists λ ∈ Fl s.t.
ϕe(P ) = λP i.e., λ is an eigenvalue of ϕe.

If the geometric multiplicity of λ is 1, then its eigenspace is G i.e., λ corre-
sponds to one isogeny. If there is another µ eigenvalue, then we have a different
eigenspace which is a kernel of another isogeny. Similarly, if the geometric multi-
plicity of λ is 2, then we have l+ 1 different subgroups corresponding to different
isogenies.
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The case when there is no eigenvalue is also clear (if there is a Fq-rational l-
isogeny, then there must be a cyclic subgroup which would give us an eigenvalue).

Theorem 80. Let p ≡ 3 mod 4 and let E be a supersingular curve over Fp. Then
EndFp(E) ∼= Z[ϕ] or EndFp(E) ∼= Z

[︂
−p+ϕ

2

]︂
. Specifically EndFp(E) ∼= Z

[︂
−p+ϕ

2

]︂
if

and only if E has 2 distinct Fp-rational points of order 2.

Proof. Since E is supersingular, then Tr(ϕ) = 0 by Claim 32. A consequence of
that is that its endomorphism algebra is isomorphic to K = Q(√−p) by Claim
37 and the endomorphism ring is isomorphic to an order O in Q(√−p). By
Corollary 1.1 we know that disc(O) = D = f 2DK where DK = disc(OK) and
f = |OK : O|.

We have p ≡ 3 mod 4 which implies DK = −p. By theorems 1 and 38 we
have Z[ϕ] ⊆ EndFp(E) ⊆ Z

[︂
−p+

√
−p

2

]︂
= Z

[︂
−p+ϕ

2

]︂
. Clearly, the conductor f = 2,

so EndFp(E) ∈ {Z[ϕ],Z
[︂

−p+ϕ
2

]︂
}.

This proves the first part of the theorem.
Assume we have P,Q ∈ E[2] and P ̸= Q are Fp-rational i.e., ϕ(P ) =

P,ϕ(Q) = Q. This implies that Ker([2]) ⊆ Ker(ϕ − [1]). By theorems 29 and 28
both isogenies [2],ϕ − [1] are separable which means we can use Theorem 9 to
obtain a unique isogeny ψ s.t. [2]ψ = ϕ − [1]. This isogeny is Fp-rational because
ϕ − [1], [2] are Fp-rational. This equality also shows that ψ cannot be expressed
as an element of Z[ϕ] i.e., it must be that Z[ϕ] ⊊ EndFp(E) ⇐⇒ EndFp(E) ∼=
Z
[︂

−p+ϕ
2

]︂
.

On the other hand, assume ψ ∈ Z
[︂

−p+ϕ
2

]︂
\ Z[ϕ] ⇐⇒ ψ = a + b−p+ϕ

2 for
some a, b ∈ Z, b ̸≡ 0 mod 2. W.l.o.g. assume b > 0. We can rewrite the
equality as (now in "isogeny notation") [2]ψ = [2][a] + [b][−p] + ϕ ⇐⇒ ψ[2] =
[a][2] + [b][−p] + ϕ . Take P ∈ E[2], P ̸= O and plug it into the equation.

On the left-hand side, we get O because P is in the kernel of [2] and ψ is an
isogeny and therefore maps O to O.

On the right-hand side, we can omit the [a][2] part for the same reason. Since
P is of order 2, b ̸≡ 0 mod 2, p is prime we get [b][−p](P ) = [−1](P ) = −P . The
RHS is −P + ϕ(P ).

To sum it up, we get ϕ(P ) = P i.e., P is Fp-rational. Since |E[2]| = 4, we
always have 3 Fp-rational points of order 2.

Theorem 81. Let p ≥ 5 be a prime s.t. p ≡ 3 mod 8 and let E be a supersin-
gular elliptic curve over Fp. Then EndFp(E) ∼= Z[ϕ] iff there exists A ∈ Fp s.t.
E is Fp isomorphic to the curve EA : y2 = x3 + Ax2 + x. Such A is unique. In
addition, if E is isomorphic to a curve EA, then E has only one Fp-rational point
of order 2.

Proof. [Cas+18] Proposition 8.

The following definition can be extended to ordinary curves or to different
fields but in our case, we are only interested in supersingular curves over Fp.

Definition 59. Let E be a supersingular curve over Fp. We say E is on the
surface (resp. on the floor) if EndFp(E) ∼= Z

[︂
−p+ϕ

2

]︂
(resp. EndFp(E) ∼= Z[ϕ]).
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Remark. The previous definition is connected to ascending/descending/horizontal
isogenies. Generally, the isogeny graph forms a what is called a volcano which
has a surface, a floor and levels between.

Theorem 82. Let p ≥ 5 be a prime s.t. p ≡ 3 mod 8 and let l > 2 be a
prime s.t.

(︂
−p
l

)︂
= 1. The supersingular subgraph of the graph Gl(Fp) has two

levels (the surface and the floor). From each vertex there are two horizontal l-
isogenies. On the surface there are h(−p) vertices and on the floor there are
3h(−p) vertices. The surface and the floor are connected 1 : 3 with 2-isogenies
(descending/ascending) and there are no horizontal 2-isogenies.

Proof. [DG13] Theorem 2.7 (2)(b).

The following theorem and corollary is a modification of Theorem 78 which
takes into account supersingular curves over Fp, p ≥ 5.

Theorem 83. Let p ≥ 5 be a prime, let K = Q(√−p) and let l be a prime s.t.
gcd(l, p) = 1. There is one to one correspondence between the sets

{supersingular elliptic curves over Fp}
↔

{elliptic curves E over C s.t. EndC(E) ∈ {Z[
√

−p],OK}}

and there is one to one correspondence also between the sets

{l-isogenies defined over Fp between supersingular curves over Fp}
↔

{l-isogenies defined over C between elliptic curves E over C s.t.
EndC(E) ∈ {Z[

√
−p],OK}}.

Proof. [DG13] Proposition 2.5 and the discussion after.

Corollary. Let p ≥ 5 be a prime, let K = Q(√−p) and let l be a prime s.t.
gcd(l, p) = 1. Let O ∈ {Z[√−p],OK}. If the set of supersingular curves over
Fp is non-empty, then it is a cl(O)-torsor where the action of the ideal class of a
proper O-ideal of prime norm l is given by a horizontal isogeny of degree l. The
inverse of the action is given by the inverse ideal which corresponds to the dual
isogeny.

Proof. It is a rephrased Theorem 83 in the terminology we have used for ordinary
curves.

Next, we present a similar theorem to Theorem 76 which tells us that the
supersingular isogeny graph over Fp is also an ϵ-expander.

Theorem 84. Let l be a prime different from p s.t. l < p
4 . Then, there exists

ϵ > 0 s.t. the supersingular component of Gl(Fp) is a l + 1-regular ϵ-expander.
Specifically, ϵ = 1 − 2

√
l

l+1 .

Proof. [Piz90] Theorem 1.
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6. CSIDH
This is the algorithm which utilizes all of our presented theory. CSIDH is a
public-key cryptography algorithm. To be precise, CSIDH is a key exchange
algorithm which means it allows 2 parties to negotiate a shared secret key while
communicating over an open channel.

CSIDH uses supersingular curves over a prime field Fp and works with the
Fp-rational subset of the endomorphism ring which is, by Claim 37, an order in
an imaginary quadratic field. This means we can work with the class group action
on EllO(Fp). This explains the acronym CSIDH1 which stands for "Commuta-
tive Supersingular Isogeny Diffie-Hellman" where "commutative" represents the
commutativity of the class group.

Generally speaking, CSIDH is an instance of what is called a "hard homoge-
nous space". It is a principal homogenous space (introduced in Chapter 3) with
a few conditions on complexity of operations.

The following definition is taken from [Cas+18].

Definition 60. Let X be G-torsor s.t. the following operations are "easy" i.e.,
their complexity is polynomial:

1. All group operations in G.

2. Getting a random sample from G (uniformly distributed).

3. Evaluating the validity of elements of X and equality of their representation.

4. Computing the group action.

The following operations are "hard" i.e., their complexity is not polynomial:

1. Given x, y ∈ X find g ∈ G : g · x = y.

2. Given x, x′, y ∈ X, g ∈ G s.t. g · x = x′ find y′ ∈ X s.t. g · y = y′.

We call (G,X) a hard homogenous space.

This definition might sound too abstract but in reality, we are already prob-
ably familiar with a hard homogenous space. The classic Diffie-Hellman key
exchange is a hard homogenous space where G = Z∗

p−1 and X = {g ∈ Z∗
p :

g is a generator of Z∗
p} and the group action is given by exponentiation.

Now we are going to present how does CSIDH key exchange work on a high
level and subsequently we are going to go into more detail using the presented
theory.

We assume that Alice and Bob want to compute a shared key without anyone
else knowing the key.

1Pronounced as "seaside".
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6.1 What are the global parameters?
The global parameters of the CSIDH scheme is a finite set of small primes {li ∈
P : 1 ≤ i ≤ n, li > 2} s.t. p = −1 + 4∏︁n

i=1 li is a prime. This prime determines a
finite field Fp s.t. an elliptic curve E0 : y2 = x3 + x over Fp is supersingular with
EndFp(E0) = O for an order O in an imaginary quadratic field.

Also we pick a security parameter m ∈ N where m is chosen as the minimal
m s.t. (2m+ 1)n ≥ √

p.

6.2 What are the public and private keys?
The private keys for Alice and Bob are integer vectors of dimension n with values
in {−m, . . . ,m}.

Let a = (a1, . . . , an) be such vector for Alice and b = (b1, . . . , bn) for Bob.
These vectors represent an element of cl(O) which is constructed from ideals of
"small" norm. Every such ideal is uniquely determined by chosen primes li. Alice
and Bob apply the group action determined by their secret vector to the elliptic
curve E0 and get elliptic curves EA (for Alice) and EB (for Bob). These curves
can be uniquely represented by a parameter which is an element of Fp.

To sum it up, the private key for Alice is the vector a and her public key is
the coefficient A ∈ Fp.

6.3 What is the shared key and how it’s com-
puted?

Denote the public keys of Alice and Bob as A,B ∈ Fp. These values uniquely
determine an elliptic curve with the same endomorphism ring. Therefore, they
can both apply the action of cl(O) determined by their secret key to compute an
elliptic curve E ′. This elliptic curve is the shared secret, more specifically, the
parameter, which uniquely determines the curve, is.

How do they arrive at the same curve? The answer is simple if we use the
group action notation. Assume [IA] ∈ cl(O) is the secret group action element of
Alice determined by a.

First, Alice computes the elliptic curve [IA]E0 = EA and Bob does the same
(using his private key) [IB]E0 = EB. This is the step (the computation of the
public key) that can be done before the communication begins.

Now Alice and Bob share the parameters A,B ∈ Fp (which correspond to
unique elliptic curves) and compute their action upon them. Alice computes
[IA]EB = E ′ and Bob computes [IB]EA = E ′′. Does E ′ = E ′′?

E ′ = [IA]EB = [IA][IB]E0 = [IB][IA]E0 = [IB]EA = E ′′

The third equality comes from the commutativity of the ideal class group.

6.4 More in depth
The previous presentation of the algorithm was very high level. Now we dive
deep into why all the steps make sense.
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Considering the choice of global parameters there is nothing to explain except
that only the primes l1, . . . , ln and m need to be published. These parameters
can be chosen once by the designers of the scheme based on the required security
level. More on that in Section 6.7.

We have already mentioned that the Fp-rational endomorphism ring of a su-
persingular curve is an order, denoted as O, in an imaginary quadratic field
K = Q(√−p).

By Theorem 81 we get that the elliptic curves2 can be uniquely represented
as one element of Fp. Therefore, the public keys are just elements of Fp but note
that not every elliptic curve y2 = x3 +Ax2 +x, for some A ∈ Fp, is supersingular.
This can be verified easily using an algorithm presented in Section 6.5. This
means we can detect invalid keys.

A few questions arise when looking at the private keys. How does a prime li
uniquely determine an element of cl(O)? This all comes down to the choice of p
and to the elliptic curve.

Theorem 80 shows that the Fp-rational endomorphism ring is isomorphic to
Z[ϕ] because, by Theorem 81, a supersingular curve E : y2 = x3+Ax2+x,A ∈ Fp

always has only one Fp-rational point of order 2.
Now we apply Lemma 69. Using the lemma notation, we have D = −p, q =

li, α =
√
D = √

−p = ϕ, f = 2.
(︂

−p
li

)︂
= 1 because −p ≡ 1 mod li and 1 is a

quadratic residue. Therefore, (li) = LL s.t. L = [l,√−p− δ] where δ is a root of
minQ(√−p).

The minimal polynomial of √
−p over Q is x2 +p and x2 +p ≡ x2 −1 mod li.

W.l.o.g. L = [l,√−p − 1], L = [l,√−p + 1]3. The choice of ±1 is obviously
arbitrary. In CSIDH, ai ∈ a represents the ideal L|ai| if ai > 0, and L|ai| if ai < 0.

The only thing left is to show how do we actually use these keys to arrive at a
shared key. We explain this process in detail using a concrete example in Section
6.6.

6.5 Public key validation
We briefly introduce the algorithm for verifying the validity of a public key. This
is considered a benefit because it narrows down the possibilities for a potential
attacker. This section follows from [Cas+18], Section 5.

By Claim 32, we know that for every supersingular curve E over Fp the order
of its Fp-rational group of points is p+ 1. In our case we have |E(Fp)| = p+ 1 =
4∏︁n

i=1 li, where li are all different primes. Since E(Fp) is a finite abelian group,
we know the group structure of E(Fp) ∼= Z4 ×∏︁

i=1 Zli .
By Theorem 31, we get a range of possible values of E(Fp) for an arbitrary

elliptic curve over Fp, that is p+ 1 − 2√
p ≤ E(Fp) ≤ p+ 1 + 2√

p.
Let P ∈ E(Fp) and denote the order of P in E(Fp) by k ∈ N. If k > 4√

p,
then there clearly exists only one a ∈ N s.t. p + 1 − 2√

p ≤ ak ≤ p + 1 + 2√
p

which means it must be that ak = |E(Fp)| because k | |E(Fp)|.
If E is supersingular and P ∈ E(Fp) is chosen at random, then, due to the

structure of E(Fp) described above, for each li P has the probability li−1
li

(there
2The model in question is called the Montgomery model.
3This can be generalized for primes of other forms. 1 is actually the eigenvalue of ϕ in E[l].
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are li − 1 generators of Zli) of having an order divisible by li.
We can thus estimate the average order of a random point of E. If we ignore

the part Z4, then we get a lower bound estimate (an expected value). With
probability 1

li
the order of P does not increase but with probability li−1

li
the

order gets multiplied by li. The expected value of the order of P is therefore:∏︁n
i=1

(︂
li

li−1
li

+ 1 1
li

)︂
.

As a lower estimate, we can see that the expected value of the order is at
least ∏︁n

i=1(li − 1) which is almost p. We also only need a point of order > 4√
p

to verify if its corresponding elliptic curve is supersingular. This heuristic leads
to an algorithm for verifying the supersingularity.

Let (E,∞) be an elliptic curve over Fp where p is of the form used in CSIDH.
Then

1. Pick a random P ∈ E(Fp). Set k = 1 and i = 1.

2. While i ≤ n do:

(a) Calculate Q =
[︂

p+1
li

]︂
P .

(b) If [li]Q ̸= ∞, then return "E is ordinary".
(c) If Q ̸= ∞, then set k = k · li.
(d) If k > 4√

p, then return "E is supersingular".
(e) Set i = i+ 1.

In the step 2(b) if [li]Q =
[︂
li

p+1
li

]︂
P = [p+ 1]P ̸= ∞, then we can be sure that

E(Fp) ̸= p+ 1 because we have calculated that P is of order > p+ 1.
In the step 2(c) we know that p+1

li
< k ≤ p + 1 and li | k. Therefore we

increase our value of k accordingly.
In the step 2(d) if k > 4√

p, then we calculated that the order of P is at least
4√

p and the order is divisible by l1 · · · li. The only possibility for E(Fp) is that
E(Fp) = p+ 1 due to Theorem 31 as explained above.

It may happen that the algorithm ends without deciding whether E is super-
singular/ordinary due to the point P being of small order. This is very unlikely
because the expected value of the order P above. Nonetheless, we can always
repeat this process.

6.6 The graph
We have defined in Chapter 5 a K-rational l-isogeny graph. In CSIDH, we ac-
tually use a union of many such graphs. As mentioned before, the graph has
2 disjoint subgraphs (supersingular/ordinary). CSIDH, as the name suggests,
works only with the supersingular subset.

By design, we have p ≡ 11 mod 12 because l1 = 3. Thus, we have the case
where

√
−1,

√
−3 /∈ Fp by Claim 73 and the graph’s edges between two vertices

have the same multiplicity.
In most our theory of the ideal class group action we have assumed that the

elliptic curve is ordinary but since we only work with Fp-rational endomorphism
ring which is isomorphic to an order in an imaginary quadratic field we can
transfer this theory to supersingular curves over Fp due to Theorem 83.
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Example 4. Set p = 4·(3·5)−1 = 59 i.e., l1 = 3, l2 = 5. Consider the supersingular
subgraphs of graphs G3(F59), G5(F59). Note that this notation is not very precise
because we are looking at only the subgraphs of G3(F59), G5(F59). To be precise,
we only look at the floor parts of G3(F59), G5(F59) (see definition 59 and Theorem
82).

First, we need to determine the set of vertices which we can represent as the
coefficients A in the Montgomery form of the curve due to Theorem 81. We
include the Montgomery form (denoted as Em,i) and also the short Weierstrass
form (denoted as Ew,i). This is because CSIDH uses Montgomery forms but we
have presented Vélu’s formulae only for short Weierstrass form due to simplicity.
We get 9 different elliptic curves.

i Em,i Ew,i A j(Ei)
1 y2 = x3 + x y2 = x3 + x 0 17
2 y2 = x3 + 6x2 + x y2 = x3 + 22x+ 54 6 48
3 y2 = x3 + 11x2 + x y2 = x3 + 29 11 0
4 y2 = x3 + 28x2 + x y2 = x3 + 29x+ 41 28 28
5 y2 = x3 + 29x2 + x y2 = x3 + 8x+ 28 29 47
6 y2 = x3 + 30x2 + x y2 = x3 + 8x+ 31 30 47
7 y2 = x3 + 31x2 + x y2 = x3 + 29x+ 18 31 28
8 y2 = x3 + 48x2 + x y2 = x3 + 30 48 0
9 y2 = x3 + 53x2 + x y2 = x3 + 22x+ 5 53 48

Note that we have "duplicate" elliptic curves in terms of j-invariants. These
are pairs of elliptic curves and their quadratic twists.

Now we want to compute isogenies which correspond to ideals [3,ϕ−1], [5,ϕ−
1]. We assume the isomorphism ϕ ∼=

√
−p in our notation, where ϕ is the

Frobenius endomorphism of the specific elliptic curve. There multiple approaches
how to calculate these.

We know that the isogeny corresponding to ideal I has kernel E[I]. Since in
our case I is generated by isogenies [3],ϕ − [1], we can see that the points of
the kernel have to be Fp-rational because for any P ∈ E[I] : ϕ(P ) = P . Thus,
every point P ∈ E[I] is a Fp-rational point s.t. [3]P = ∞ and ϕ(P ) = P .
Also, since the curves are supersingular and defined over a prime field, then
|E(Fp)| = p + 1 = 4∏︁n

i=1 li. From group theory we know that there cannot
be multiple subgroups of E(Fp) of prime order. CSIDH uses a random point
sampling for getting such point, meaning it randomly selects a Fp-rational point
of E and checks if its order is 3.

Here are the points of such orders of our curves.
Ew,i PI

y2 = x3 + x (12, 18)
y2 = x3 + 22x+ 54 (3, 41)

y2 = x3 + 29 (0, 41)
y2 = x3 + 29x+ 41 (46, 57)
y2 = x3 + 8x+ 28 (45, 2)
y2 = x3 + 8x+ 31 (7, 31)
y2 = x3 + 29x+ 18 (22, 34)

y2 = x3 + 30 (21, 21)
y2 = x3 + 22x+ 5 (28, 34)

58



Recall that our chosen ideal I is of prime norm i.e., |E[I]| is of prime order
thus since we have found a point which belongs into E[I], we have the generator.

Now we can use Vélu’s formulae from Theorem 16 to compute the isogenies
which correspond to such ideals. Let’s compute the isogeny given by I from
E1 : y2 = x3 + x.

P1 = (12, 18), P2 = 2P1 = −P1 = (12, 41)
tP1 = tP2 = 3 · 122 + 1 = 20

uP1 = uP2 = 2 · 182 = 2 · 412 = 2 · (−18)2 = 58
wP1 = wP2 = uP1 + tP1 · 12 = 3

=⇒
t = 40, w = 6

We get that this isogeny, denoted as λ1,5, is from E1 to E ′ : y2 = x3 + 37x + 17.
The j-invariant of this curve is 47. Now we can use Theorem 3 to check which
one (E5 or E6) is isomorphic to this elliptic curve. 17

37 = 18 ∈ F59 is non-square
in F59 and so is 28

8 = 33, which means E ′ ∼= E5.
We also calculate the dual isogeny from E5 → E1 given by I = [3,ϕ + 1].

This isogeny’s kernel is also generated by a point of order 3 but this point is not
necessarily Fp-rational. We have a condition ∀P ∈ E[I] : ϕ(P ) = −P .

In our model if P = (xP , yP ) ∈ E, then −P = (xP ,−yP ). From this we can
conclude that the first coordinate of P is an element of Fp since the Frobenius
endomorphism fixes exactly the elements of Fp. The second coordinate satisfies
yp = −y which means that if y ̸= 0, then y /∈ Fp but y must satisfy the curve
equation y2 = x3 + Ax + x and x3

P + AxP + xP = a ∈ Fp for xP ∈ Fp. In other
words, y is the square root of a ∈ Fp. Thus y ∈ Fp(

√
a) \ Fp

∼= Fp2 \ Fp.
The dual isogeny ˆ︃λ1,5 of λ1,5 is the isogeny with kernel generated by a Fp2-

rational point of E5 of order 3 with first coordinate in Fp.
To find such point CSIDH uses the same sampling approach as for finding the

Fp-rational point. Combining these conditions, we get an algorithm for finding
generators of E[I] or E[I].

1. Choose a random x ∈ Fp.

2. Calculate a = x3 + Ax+ x ∈ Fp.

3. If a is a square in Fp:

(a) Calculate if the order of (x,
√
a) ∈ E(Fp) is l. If it is, then you have

generator of [l,ϕ − 1]. If it’s not, go to 1.

4. Else:

(a) Calculate if the order of (x,
√
a) ∈ E(Fp2) \ E(Fp) is l. If it is, then

you have generator of [l,ϕ + 1]. If it’s not, go to 1.

We will again work with a short Weierstrass representation of E5 : y2 =
x3 + 8x + 28. Using the representation of F592 ∼= F59[α]/(α2 + 58α + 2) and
algorithm above we calculate the point of E5(F592) \ E5(F59) of order 3 which is
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P = (18 : 43α + 8). Now we again use the Vélu formulae, the only difference is
that we are now doing calculations in F592 :

P1 = (52, 25α + 17), P2 = 2P1 = −P1 = (52, 34α + 42)
tP1 = tP2 = 3 · 522 + 8 = 37

uP1 = uP2 = 2 · (25α + 17)2 = 25
wP1 = wP2 = uP1 + tP1 · 52 = 2

=⇒
t = 15, w = 4.

This shows us that the isogeny from E5, determined by the kernel generated by
(52, 25α + 17), is an isogeny to the curve E ′′ : y2 = x3 + 51x + 0. Again, by
comparing j-invariants, we get that E ′′ ∼= E1 which makes sense since we have
calculated the dual isogeny.

The dual isogeny computation requires computation in Fp2 (this can be pre-
vented using Montgomery curves) but since I induces an action on the set of
supersingular curves defined over Fp, we always get a curve and an isogeny which
can be defined over Fp. Also note that in the Vélu formulae we do not need to
do arithmetic in Fp2 since we can always substitute y2

P in terms of xP . The only
thing where in our case we need to do the arithmetic is to compute the order.
This can be avoided by using the Montgomery model (which CSIDH actually
uses), where the point addition can be done using only the x-coordinate which is
always going to be in Fp as explained above.

By proceeding doing the same for all listed curves we get this graph G3(F59).

E1

E2

E3

E4

E5E6

E7

E8

E9

Going clockwise in the graph corresponds to applying the action [li,ϕ − 1],
going counter-clockwise corresponds to the opposite action [li,ϕ−1]−1 = [li,ϕ+1].

Similarly for G5(F59).
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Ew,i PI

y2 = x3 + x (35, 28)
y2 = x3 + 22x+ 54 (38, 40)

y2 = x3 + 29 (21, 26)
y2 = x3 + 29x+ 41 (1, 37)
y2 = x3 + 8x+ 28 (23, 44)
y2 = x3 + 8x+ 31 (35, 36)
y2 = x3 + 29x+ 18 (4, 32)

y2 = x3 + 30 (14, 1)
y2 = x3 + 22x+ 5 (47, 14)

E1

E2

E3

E4

E5E6

E7

E8

E9

And now we combine G3(F59), G5(F59) into G3,5(F59).

E1

E2

E3

E4

E5E6

E7

E8

E9

Let’s say Alice’s (green) private key is a = (2,−3) and Bob’s (blue) private key
is b = (1, 4). The keys correspond to public keys EA = E8, EB = E9 (technically
the A parameters of the Montgomery curves which are (E8, E9) = (48, 53)). The
public key computation in the graph can be visualized in this manner.
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E1

E2

E3

E4

E5E6

E7

E8

E9

Thanks to the commutativity of the ideal class group, they should both arrive
on the same shared secret [L3]a1 [L5]a2E9 = [L3]b1 [L5]b2E8 = E6 as shown here.

E1

E2

E3

E4

E5E6

E7

E8

E9
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This was an example how CSIDH works and how it computes a shared secret.
Of course, in practice, the prime field Fp is much bigger which means that the
graphs are huge.

One question that might arise is how can we be sure that the subgraph of
Gli(Fp) is always a cycle with the same number of vertices. This is true due to
Theorems 81 and 82. We are starting at the floor which has 3h(−p) vertices. We
cannot "escape" from the floor because we are only using horizontal isogenies of
degree at least 3. The graph is a cycle because we have 2 outgoing isogenies for
every vertex and EllFp(Z[ϕ]) is a cl(Z[ϕ])-torsor by Theorem 83.

6.7 Security
In this section we will briefly discuss the security of CSIDH.

Theorem 82 states we have a graph with 3h(−p) vertices. We can roughly
estimate that h(−p) = h(D) ∼

√︂
|D| for any discriminant D < 0 due to [Cox13],

page 135. In our case this means that we have roughly around √
p vertices.

Therefore, the (shared and public) key space grows proportionally to the size
of √

p, since √
p can be represented using roughly log2(

√
p) = log2(p)

2 bits.
The private key is a vector of n integers in the range {−m, . . . ,m} i.e., the

size of the private key space is (2m+ 1)n. Note that these vectors represent ideal
classes [le1

1 . . . len
n ] and there exist different representatives of such classes.

The security of CSIDH is analyzed with respect to the key recovery problem.
The key recovery problem is the problem of having curves E0, E1 s.t. E1 = [I]E0
for some [I] ∈ cl(Z[ϕ]) and the attacker wants to recover [I]. There is also an
assumption that [I] has to be represented in a way that the action of [I] can be
computed efficiently (i.e., polynomial time), for example, as product of ideals of
small norm.

The importance of this problem to CSIDH security of obvious. The elliptic
curves EA, EB are transmitted in plaintext. If an attacker is able to recover
the ideal [IA] (EA = [IA]E0) then, assuming he can evaluate the action by [IA]
efficiently, he can just compute [IA]EB and get the shared key. He also gets the
private key because technically the vector of exponents (the private key) is just
a representation of the ideal class.

6.7.1 Classical security
In classical security we consider non-quantum algorithms for attack.

The most obvious attack is the brute-force attack on the private keys. As
mentioned, the "naive" key space is (2m + 1)n. This would hold if there were
assurances that for a ideal class [I] there is a unique short representation of [I]
using ideals of small norm. By small, we mean of norm less than ln and by short
we mean that all the exponents are in the range {−m, . . . ,m}.

In the paper ([Cas+18], Section 7.1) it is argued that under assumptions, that
the ideal class group cl(Z[ϕ]) has a cyclic subgroup of order N where N ≈ h(−p),
the number of small representations is (2m+1)n

N
.

This explains the motivation behind m being chosen as the minimal m ∈ N
s.t. (2m+1)n ≥ √

p. Since h(−p) ≈ √
p, we choose m so that the ratio (2m+1)n

N
≈
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(2m+1)n

√
p

is close to 1.
This means that the time complexity of the brute force search is exponential

in the number of bits of p because (2m+ 1)n ≈ √
p = 2

log2(p)
2 .

Authors also mention that the meet-in-the-middle attack is possible with time
complexity O( 4

√
p), which is also exponential in the number of bits of p.

6.7.2 Quantum security
In this section, we briefly present an attack using quantum algorithm which is
considered subexponential. We will not go into details of quantum computing
because that is well beyond the scope of this work.

There exists a quantum algorithm which solves in subexponential time (and
space) a what is called an "abelian hidden-shift problem".

The problem is fairly simple. Given an known abelian group G, a known finite
set S and two black-box functions f0, f1 : G → S, we say that f0, f1 hide a shift
s ∈ G if f0 is injective and ∀g ∈ G : f0(x) = f1(xs) ("f1 is a shifted version of
f0"). The goal is to find s using queries to f0, f1.

It can be easily seen that solving this problem is equivalent to solving CSIDH
(recovering the key).

Assume we have elliptic curves E0, EA. Set G = cl(Z[ϕ]), S = EllFp(Z[ϕ]).
Technically this set is the set of j-invariants but in CSIDH this does not determine
the elliptic curve uniquely due to quadratic twists. We omit this distinction for
the sake of simplicity. Then f0 represents the group action by [I] and f1 represents
the group action by [IA][I] i.e., s = [IA] (the private key). f0 is injective because
EllFp(Z[ϕ]) is a cl(Z[ϕ])-torsor.

Note that solving the abelian hidden-shift problem doesn’t necessarily imply
that we get [IA] in a representation that can be efficient. But that can be done
as shown in [CJS14] which presents an algorithm which computes an efficient
representation of [IA].

The quantum security of CSIDH can be summed up to that there exist subex-
ponetial quantum algorithms. The security of post-quantum algorithms is usually
evaluated with comparison to the security of AES with 128, 192, 256-bit keys.

Denote by CSIDH-log2(p) an instance of the algorithm with p chosen to be a
log2(p)-bit number. The corresponding security levels of CSIDH are.

AES CSIDH
AES-128 CSIDH-log2(512)
AES-192 CSIDH-log2(1024)
AES-256 CSIDH-log2(1792)

6.8 Values of parameters in practice
In this section we will look at some concrete values of selected parameters of
CSIDH for a 512-bit prime p.

Choosing p to be 512-bit number corresponds to having n = 74 where l1, . . . , l73
are the smallest distinct primes greater than 2 and l74 is chosen as the smallest
prime s.t. −1+4∏︁74

i=1 li is a prime and p is 512-bit number which gives l74 = 7514.
4In the CSIDH paper the author chose l74 = 587 which gives a 511-bit number.

64



In this case

p =
0x821ed32c694fa08908391230eec2d67c5bd46f45b92843ccd37a36507ad38a40
adf3c8a9b259553bf3b3fe5257b0b4327d59bb18c5a5f1ce319564a4f73af0cb.

We know that n = 74. Let’s compute m. We know that m is the smallest integer
s.t. (2m+ 1)n ≥ √

p. To get an idea how big m is:

log2((2m+ 1)n) = log2(
√
p) ⇐⇒ n log2(2m+ 1) = log2(p)

2 = 256

=⇒

log2(2m+ 1) = 256
74 ≈ 3.5

⇐⇒
⌊log2(2m+ 1)⌋ = 3 ⇐⇒ ⌊log2(2m+ 1)⌋ + 1 = 4.

This shows that 2m+1 should be a 4-bit number. If we calculatem asm = 2n
√
p−1

for our p, we get m = 15. Note that these are just rough estimates to give the
reader an idea about practical sizes.

There is clearly a tradeoff between the number m and n. Choosing more
primes (bigger n) we get a smaller m, which results in smaller private keys. In
our case we have 74 4-bit numbers to store. This corresponds to private key size
of 37 bytes. Public keys are numbers in Fp i.e., they are 512-bit numbers ⇐⇒ 64
bytes.

These key sizes are small compared to other post-quantum key exchange al-
gorithms. For example, SIDH or NTRU have private and public key sizes in
hundreds of bytes.

One thing that could be a little bit concerning is the assumption that the
graph of l1, . . . , l74 isogenies is a ϵ-expander for some ϵ > 0. Recall Theorems
75 and 76. Assuming previously chosen values of li, we can see that our largest
isogeny degree is l74 = 751. But Theorem 76 defines the set S as all primes
≤ B = log(p)2 (we set δ = 0 for this case). The value of B in this case for our p
is about 125468, which is significantly larger than 751.

The number of different primes chosen (n in CSIDH) to fulfil this bound can
be calculated using the standard prime number theorem: log(p)2

log(2 log(p)) ≈ 19117 = n.
Assuming we would use these larger parameters for CSIDH, it would clearly

make the private key sizes significantly larger and the algorithm would not be
very practical in this sense.

In the CSIDH paper there is not explicitly stated much about the selection of
the parameters with respect to the mixing properties of the graph, which imply
that the shared key distribution is truly uniform. We suspect that CSIDH authors
assume that the value of the exponent 2 + δ in Theorem 76 can be improved up
to 1 + δ. This is stated in the Section 7.2 of [JMV09], where the authors note
that the value of 2 + δ is expected to be actually 1 + δ.

If we assume this modification from 2+δ to 1+δ, we get to the values < 100 for
n and around 500 for B, depending on the choice of δ, which actually correspond
to the chosen parameters by the authors.
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7. SIDH
In this chapter, we present another algorithm for a key exchange utilizing isogenies
between supersingular curves. This algorithm is called SIDH, which stands for
"Supersingular Isogeny Diffie-Hellman" (almost the same as CSIDH). Although
the names are almost the identical, these core theory behind them is quite differ-
ent.

Note that you might have come across an algorithm called "SIKE". SIKE is
a standardized version of SIDH (SIDH is the blueprint). SIKE is currently one
of the Round 3 finalists of NIST’s Post-Quantum Cryptography Standardization
project.

We follow the same format as in the CSIDH chapter and we will mainly focus
on the differences between these two algorithms.

7.1 What are the global parameters?
First, we choose distinct small primes lA, lB and exponents eA, eB ∈ N. Together
with a coefficient f ∈ N they form a prime p = leA

A leB
B f ± 1. f is chosen s.t.

leA
A leB

B f ± 1 is a prime. eA, eB are chosen s.t. p is of the desired size and leA
A ≈ leB

B .
We also calculate a supersingular curve E0 over Fp2 s.t. |E0(Fp2)| = (leA

A leB
B f)2

and calculate points PA, PB, QA, QB s.t. ⟨PA, QA⟩ = E0[leA
A ] and ⟨PB, QB⟩ =

E0[leB
B ].
To sum it up, the global parameters that need to be published are

(lA, lB, eA, eB, f, E0, PA, PB, QA, QB).

We assume that Alice and Bob have pre-selected which one of them is A and
which one of them is B. This can obviously be done by assuming that the side
beginning communication is A and the other side is B. We only mention this
because in CSIDH this is a non-issue.

7.2 What are the public and private keys?
We assume that Alice is ”A” in this context. Alice’s private key is a randomly
generated pair of numbers (mA, nA) ∈ Z2

l
eA
A

s.t. lA ∤ mA or lA ∤ nA. This pair
corresponds to an isogeny ψA : E0 → EA (more on that later).

The public key is a pair (EA, ψA(PB), ψA(QB)).
Bob does the same except his private key pair is an element of Z2

l
eB
B

.

7.3 What is the shared key?
Compared to the section in CSIDH chapter, we only mention here that the share
key is a supersingular elliptic curve denoted as EAB. By Claim 44, we can uniquely
represent this curve by its j-invariant which is an element of Fp2 . How do we arrive
at EAB is explained in the next section.
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7.4 More in depth
The first question is, how do we calculate the elliptic curve E0 over Fp2 with
predefined set of points. We have already mentioned that this is indeed possible
using the presented theory in Chapter 4. The full details for the general case
and efficient algorithm can be found in [Bro06]. Nonetheless, the elliptic curve
can be calculated once by the designers of SIDH. Same goes for the generators
PA, QA, PB, QB.

W.l.o.g. assume that p = leA
A leB

B f + 1. By design, |E0(Fp2)| = (p − 1)2 =
(leA

A leB
B f)2 and . By Theorem 31, we have

|E0(Fp2)| = p2 + 1 − Tr(ϕe) ⇐⇒ (p− 1)2 = p2 + 1 − Tr(ϕe)
=⇒

Tr(ϕe) = 2p.

For the case p = leA
A leB

B f − 1 we get Tr(ϕe) = −2p.
We have calculated the value of the trace of Frobenius because we need to

apply Theorem 33 to get the structure of E0(Fp2). We get that E0(Fp2) ∼= Zp−1 ×
Zp−1.

This tells us that E0(Fp2) ≤ E0[leA
A leB

B f ] but, by Theorem 13, E0[leA
A leB

B f ] ∼=
Zp−1 × Zp−1. Therefore, E0(Fp2) = E0[leA

A leB
B f ] i.e., the torsion group is Fp2-

rational. Especially, E0[leA
A ], E0[leB

B ] ≤ E0[leA
A leB

B f ] are Fp2-rational.
By Theorem 13, the points PA, QA have order leA

A and they are Fp2-rational.
Similarly, the points PB, QB have order leB

B and they are also Fp2-rational.
So, how does the pair (mA, nA) ∈ Z2

l
eA
A

uniquely determine an isogeny ϕA?
Alice calculates a point RA = [mA]PA + [nA]QA ∈ E0[leA

A ]. The order of RA in
E0[leA

A ] is leA
A due to the following lemma.

Lemma 85. Let E be an elliptic curve over Fq, let P,Q be generators of E[ln],
where l is a prime s.t. gcd(l, q) and n ∈ N i.e., ⟨P,Q⟩ = E[ln], and let a, b ∈ N
s.t. l ∤ a or l ∤ b. Then the point R = [a]P + [b]Q ∈ E[ln] is of order ln.

Proof. W.l.o.g. assume l ∤ a. Point P is by definition of order ln and because l ∤ a
the point [a]P is also of order ln due to Lagrange theorem. [ln]R = O because
[ln]R = [ln]([a]P + [b]Q) = [a][ln]P + [b][ln]Q = [a]O + [b]O = O.

The only problem might arise if there exists ln′ , where n′ < n, s.t. [ln′ ]R = O
i.e., if R was of order less than ln. This would imply [ln′ ][a]P = [−1][ln′ ][b]Q.
[a]P is of order ln therefore [ln′ ][a]P ̸= O and [ln′ ][a]P ∈ ⟨P ⟩. But the equality
above implies that [ln′ ][a]P ∈ ⟨Q⟩ which contradicts P,Q being the generators of
E[ln] because ⟨P ⟩ ∩ ⟨Q⟩ = {O}.

Alice now has a point RA of order leA
A . Alice calculate the isogeny ψA : E0 →

EA where Ker(ψA) = ⟨RA⟩ using Vélu formulae presented in Theorem 16. Note
that we allow (and it is recommended for performance) for lA = 2 and we have
only presented Vélu formulae for a kernel of odd order. As mentioned before,
there exist general formulae for an arbitrary kernel. For details refer to [Was08],
Theorem 12.16.

By Claim 17, the isogeny ψA and EA are defined over Fp2 because the kernel
is as well. Because |EA(Fp2)| = |E0(Fp2)|, by Theorem 43, then also
EA[leA

A ], EA[leB
B ] ≤ EA(Fp2) and deg(ψA) = leA

A .
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If you take a look at the Vélu formulae, the calculation of an isogeny of degree
leA
A (assuming leA

A is "big") is not very efficient. Specifically, we need to go over
all leA

A points of its kernel to calculate this. But, we can use the same approach
presented in the proof of Theorem 15 to calculate eA isogenies of degree lA. This
approach is exponentially faster because we need to go over only lAeA points.

The SIDH paper [FJP11] focuses a lot on the optimal approach how to cal-
culate the isogeny efficiently. We only present this basic speedup. We can sum-
marize the calculation in this algorithm which basically stems from the proof of
Theorem 15.

1. Set R0 = RA, i = 0.

2. While i < e do:

(a) Calculate the isogeny ψi : Ei → Ei+1 s.t. Ker(ψi) = ⟨[leA−i−1
A ]Ri⟩.

(b) Set Ri+1 = ψi(Ri), i = i+ 1.

At the end we get that ψA = ψe−1 ◦ . . . ψ0 and Ee = EA. In every iteration
the point Ri has order lA in Ei(Fp2) therefore every ψi has degree lA.

In the next step, Alice exchanges public keys with Bob. Alice has received
the elliptic curve EB and the points ψB(PA), ψB(QA) ∈ EB(Fp2).

Alice then computes the isogeny ψ′
A : EB → EAB defined as Ker(ψ′

A) =
⟨[mA]ψB(PA) + [nA]ψB(QA)⟩. It is not clear what the order of the kernel is. To
clear things up we introduce this lemma.

Lemma 86. Let ψ : E → E ′ be an isogeny between elliptic curves (E,O), (E ′,O′)
and let P ∈ E s.t. ord(P ) = n ∈ N. If ∀a ∈ N, a < n : [a]P /∈ Ker(ψ), then
ord(ψ(P )) = ord(P ).

Proof. We know [n]P = O and ∀a ∈ N, a < n : [a]P ̸= O. Denote n′ =
ord(ψ(P )).

If n′ < n, then [n′]ψ(P ) = O′ ⇐⇒ ψ([n′]P ) = O′. This is a contradiction
because that implies [n′]P ∈ Ker(ψ).

Because ψB has kernel ⟨[mB]PB+[nB]QB⟩ ≤ E[leB
B ] and by definition PA, QA /∈

E[leB
B ], applying Lemma 86 we get that ψB(PA), ψB(QA) have order leA

A . It must
be that ⟨ψB(PA), ψB(QA)⟩ = EB[leA

A ] and, by Claim 85, [mA]ψB(PA)+[nA]ψB(QA)
has order leA

A in EB(Fp2).
We have shown that deg(ψA) = deg(ψ′

A) = leA
A and deg(ψB) = deg(ψ′

B) = leB
B .

Assuming Bob follows the same steps as Alice, denote by EAB and EBA the elliptic
curves that are the codomains of ψ′

A, ψ
′
B. We need to check if EAB = EBA. This

can be done by comparing the kernels of isogenies ψ′
A ◦ ψB and ψ′

B ◦ ψB.
Let us validate that

Ker(ψ′
A ◦ ψB) = ⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩ = Ker(ψ′

B ◦ ψA).

We will only prove one equality because the other one can be proven in the same
way.

We know that Ker(ψB) = ⟨[mB]PB + [nB]QB⟩ ≤ E0(Fp2). The kernel of
ψ′

A : EB → EBA is defined as ⟨[mA]ψB(PA) + [nA]ψB(QB)⟩ ≤ EB(Fp2).
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Denote S = {R ∈ E0(Fp2) : ψB(R) ∈ ⟨[mA]ψB(PA) + [nA]ψB(QB)⟩} i.e.,
S = ψ−1

B (⟨[mA]ψB(PA) + [nA]ψB(QB)⟩) = ψ−1
B (Ker(ψ′

A)).
Let R′ ∈ ⟨[mA]ψB(PA) + [nA]ψB(QB)⟩, that means there exists a ∈ N s.t.

R′ = [a][mA]ψB(PA) + [a][nA]ψB(QA). There also must exist R ∈ S s.t. ψB(R) =
R′ = [amA]ψB(PA) + [anA]ψB(QA). Because isogenies [n], n ∈ N commute with
other isogenies we get

ψB(R) = ψB([amA]PA + [anA]QA).

Then clearly S = ⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩ and Ker(ψ′
A ◦ ψB) =

ψ−1
B (Ker(ψ′

A)) = S.
We have shown that the algorithm works correctly.
In the language of isogeny graphs, we work with the supersingular subset of the

union of GlA(Fp2) and GlB (Fp2). By Theorem 84, this graph is a ϵ-expander. From
now on, for simplicity, when we refer to Gl(Fp2) we mean only the supersingular
subset.

The theorem assumes isogenies and elliptic curves defined over Fp but, as we
have already mentioned, all supersingular curves over Fp can be represented by
an elliptic curve defined over Fp2 and lA, lB-isogenies, in our case, are defined over
Fp2 1. Therefore, it has "good mixing" properties in the similar way the isogeny
graph in CSIDH has.

But, note that there is an unresolved problem with the walk length. For
details, see the Security section below.

The graphs have the same number of points. The specific number is known
due to Theorem 45 and it is roughly

⌊︂
p
12

⌋︂
. Note that, compared to CSIDH, the

isogeny graphs have a more complicated structure. Although, by Theorem 84,
the isogeny graph Gl(Fp) is l + 1-regular, in the case of Gl(Fp2) there might be
exceptional vertices which might have loops or the degree of the vertices is < l+1.

In the case there is a loop on a vertex in Gl(Fp2), that means there is an
l-isogeny E1 → E2, where j(E1) = j(E2), but this isogeny is Fp-isomorphic to a
Fp-isomorphism which means the loop disappears in Gl(Fp).

In the case there is a vertex in Gl(Fp2) with degree < l + 1, that means at
least 2 isogenies (defined by different kernels) go to elliptic curves with the same
j-invariant.

7.5 Security
As we have already mentioned, SIDH works with the supersingular part of
GlA(Fp2) and GlB (Fp2). Both of these parts have the same number of vertices
which is about

⌊︂
p
12

⌋︂
. Therefore, the size of the public key space and the size of

the shared key space is roughly the same as p.
The private key space little bit more complicated. The private key is basically

the isogeny which is uniquely determined by its kernel. We need to know how
many distinct kernels are there. This lemma answers the question.

Lemma 87. Let l be a prime and n ∈ N. The group Zln × Zln has ln−1(l + 1)
distinct cyclic subgroups of order ln.

1Note, this is not entirely correct. There are a few exceptions mentioned below.
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Proof. From group theory we know that a cyclic subgroup of order k has exactly
ϕ(k) different generators, where ϕ(·) is the Euler’s totient function.

We want to count the number of elements of Zln × Zln with order ln. Let
(a, b) ∈ Zln × Zln . Clearly, ord((a, b)) = lcm(ord(a), ord(b)). Therefore, either a
or b has to be of order ln. We have ϕ(ln) possibilities for a of order ln and we can
pair it with ln other elements. Same for the case when b is of order ln.

This gives us ϕ(ln)ln + lnϕ(ln) = 2ϕ(ln)ln possible pairs, but we have counted
some elements twice. Specifically, we have counted twice the pairs where both
a and b are of order ln. The number of such pairs is ϕ(ln)2. To sum it up, the
number of different pairs is 2ϕ(ln)ln − (ϕ(ln))2.

Applying the fact we have stated at the beginning of this proof, we have

2ϕ(ln)ln − (ϕ(ln))2

ϕ(ln) = 2ln − ϕ(ln) = 2ln − (ln − ln−1) = ln−1(l + 1)

different cyclic subgroups of order ln.

This shows us that the group E[leA
A ] has leA−1

A (lA + 1) different subgroups of
order leA

A which correspond to leA
A different leA

A -isogenies.
We have briefly mentioned, in the previous section, that there is a problem

with the walk length on the graphs used in SIDH. The problem is that Alice
(similarly for Bob) makes a walk of length eA on GlA(Fp2) to get her public key
and then makes a walk of length eB on GlB (Fp2).

We can roughly estimate the minimal walk length given by Theorem 75. For
simplicity, assume lA = 2, lB = 3, f = 1 and p = 2eA3eB + 1. Then, by Theorem
84, we have ϵ = 1 − 2

3

√
3. Using the notation from Theorem 75 we have |V | ≈

p, |V ′| = 1

log(2p)
log(2 − 2

3

√
3)
>

log(2p)
log(2) =

= log2(2p) = log2(2(2eA3eB + 1)) > log2(2(2eA3eB )).

Because we chose eA, eB s.t. 2eA ≈ 3eB , we get log2(2(2eA)3eB ) ≈ 2eA + 1. This
means that, with generous estimates, the walks should be at least twice as long.
Also, we do not know very well the mixing behavior of walking half of the total
walk on GlA(Fp2) and the other half on GlB (Fp2).

The authors mention this non-uniformity but note that this is still a subject
to further research.

Regarding complexities of attacks using classical and quantum computers, we
only briefly mention the following. The best classical and quantum attacks against
SIDH have exponential time complexities. Therefore, compared to CSIDH, SIDH
is "more secure" against quantum computers. This is because we cannot exploit
the commutativity of the endomorphism ring since it is an order in a quaternion
algebra and not in an imaginary quadratic field.
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Conclusion
In Chapter 1, we have presented the necessary theory to understand the subse-
quent chapters. We have provided a proof of uniqueness for Theorem 14, we have
expanded the proof of Theorem 15, we have provided a proof for Claim 17 and
then produced an example of how to apply Theorem 16.

In Chapter 2, we have focused on building the theory of supersingular and
ordinary elliptic curve and the structure of their endomorphism rings. We have
provided a proof for Theorems 29, 39, 42, 43 and for Claim 46. Mainly, our
contribution in this chapter is the compilation of the necessary statements for
CSIDH and SIDH from [Sut19], [Sil09], [Sch87], [Gal12] and presenting them in
a united manner with expanded proofs. We especially focused on the required
fields of definitions for some statements. For example, in most of the literature
there is no mention of 42 which tells us that for ordinary elliptic curves all of
their isogenies are defined over Fq. This is necessary for implementations of the
algorithms.

Chapter 3 was about the ideal class group action which was presented using
the theory of elliptic curves over C. This chapter is mainly compilation of [Sut19]
and we have formulated and provided proofs for Claims 56, 57 and Theorems 61,
62.

Chapter 4 is supposed to give the reader an idea how and why can we use the
theory of Chapter 3 for finite fields. We have provided an exhaustive commentary
and collected necessary proofs from [Sut19], [Sil94] and [Lan12]. We have focused
on the way how the reduction map works concretely which is usually in texts like
[Sil94] or [Lan12] presented too abstractly. We have also presented and proven
Lemma 69 which is crucial for understanding CSIDH.

In Chapter 5 we finally presented the isogeny graphs for supersingular and
ordinary curves. We focused on the details regarding how automorphisms al-
ter the graph structure and provided an example for better understanding. We
also formulated and proved Claim 73 which is used in the next chapter to show
correctness of CSIDH.

Then, we have provided some graph theory from [JMV09] and [Piz90] that
is relevant to the security of CSIDH and SIDH. The theorems are not very well
presented or mentioned in SIDH and CSIDH papers and we have followed up on
them in the chapters 6, 7.

We also expanded the previous chapter and have shown why we have an ideal
class group action on elliptic curves over finite fields with the help of [Sut19] and
[DG13]. Additionally, we formulated and proved Theorem 80.

In the last two chapters (6, 7), we have presented CSIDH and SIDH as de-
scribed in [Cas+18] and [FJP11]. In both cases, we have extensively explained
the reasons why do the claims mentioned in the papers hold with references to
the presented theory.

For CSIDH, we have created an example of the calculation of the shared key
between two parties and provided a visual representation of the key exchange
on the isogeny graphs. Additionally, we have briefly presented the security of
the algorithm with relation to the chosen parameters. We have also analyzed a
proposed version of the parameters by the authors and noted that the assumptions
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of theorems from Chapter 5 are not met. We stated our hypothesis why the
authors made such choice with relation to the open problems section of paper
[JMV09].

In the chapter 7, we have followed the structure of the previous chapter and
provided reasons behind the design choices of SIDH. We have formulated and
proved Lemmas 85, 86 and 87. We have also touched on the security of SIDH
with relation to the mixing properties of the graphs. We have noted that they
also do not meet the assumptions of relevant theorems. Compared to CSIDH,
the authors warn about this in their paper.

The last chapter could be expanded by creating an example similar to the one
presented in CSIDH. Also, it would be beneficial to do an analysis of the size of
parameters with comparison to CSIDH.

Furthermore, we have not focused much on the security analysis of these
algorithms because they are fairly new (especially CSIDH) and at the time of
writing the security is still being analyzed.

For further study of CSIDH and SIDH, we recommend the PhD thesis of
Lorenz Panny (one of the authors of CSIDH) [Pan21] and lecture notes by Luca De
Feo (one of the authors of SIDH) [Feo17]. For general study of isogeny graphs, we
recommend the notable PhD thesis by David Kohel [Koh96] and the habilitation
thesis by Luca De Feo [Feo18].
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